School of Environment and Natural Resources, Renmin University of China, 100872 Beijing, People's Republic of China.
Oecologia. 2010 Apr;162(4):853-63. doi: 10.1007/s00442-009-1515-6. Epub 2009 Dec 9.
We tested three hypotheses related to the functioning of mountain plants, namely their reproductive effort, leaf surface structure and effectiveness of CO(2) assimilation, using archive material from contrasting elevations. Analysis of elevational trends is at risk of suffering from two major biases: a phylogenetic bias (i.e. an elevational change in the abundance of taxonomic groups), and covariation of different environmental drivers (e.g. water, temperature, atmospheric pressure), which do not permit a mechanistic interpretation. We solved both problems in a subcontinental survey of elevational trends in key plant traits in the European Alps and the high Arctic (northern Sweden, Svalbard), using herbarium samples of 147 species belonging to the genera Carex, Saxifraga and Potentilla. We used both species and phylogenetically independent contrasts as data points. The analysis revealed enhanced reproductive efforts at higher elevation in insect-pollinated taxa (not in wind-pollinated taxa), no increase in leaf pubescence at high elevation (as is often assumed), and a strong correlation between (13)C discrimination and elevation. Alpine taxa operate at a smaller mesophyll resistance to CO(2) uptake relative to diffusive resistance (stomata). By comparison with congeneric low altitude polar taxa (low temperature, but high atmospheric pressure), the response could be attributed to the elevational decline in atmospheric pressure rather than temperature (a mean increase in delta(13)C by 1.4 per thousand km(-1)). The signal is consistent within and across genera and within species, suggesting rapid adjustment of leaf physiology to reduced partial pressure of CO(2). These results offer answers to long-debated issues of plant responses to high elevation life conditions.
我们利用来自不同海拔的档案材料,检验了与山地植物功能相关的三个假说,即繁殖投入、叶片表面结构和 CO2 同化效率,利用来自不同海拔的档案材料。海拔梯度分析存在两个主要的偏差风险:一个是系统发育偏差(即分类群丰度随海拔的变化),另一个是不同环境驱动因素的共变(例如水、温度、大气压力),这使得无法进行机制解释。我们通过对欧洲阿尔卑斯山和高北极(瑞典北部、斯瓦尔巴群岛)的关键植物特征的海拔梯度进行的亚大陆调查,解决了这两个问题,该调查使用了 147 种属于苔草属、虎耳草属和委陵菜属的植物标本。我们使用了物种和系统发育独立对比作为数据点。分析表明,传粉昆虫授粉的分类群在高海拔地区的繁殖投入增加(而非风授粉的分类群),高海拔地区叶片绒毛没有增加(这是通常假设的),(13)C 鉴别与海拔之间存在很强的相关性。高山分类群的叶片胞间阻力相对于扩散阻力(气孔)对 CO2 吸收的阻力较小。与同属的低海拔极地分类群(低温,但大气压力高)相比,这种反应可能归因于大气压力随海拔的下降,而不是温度(每千公里 delta(13)C 增加 1.4 个百分点)。该信号在属内和属间以及种内都一致,表明叶片生理学对 CO2 分压降低的快速调整。这些结果为长期争论的植物对高海拔生活条件的反应问题提供了答案。