Institute of Anatomy, University of Leipzig, Medical Faculty, Leipzig, Germany.
J Neurosci Res. 2010 May 1;88(6):1234-41. doi: 10.1002/jnr.22303.
In the vertebrate CNS, glutamate transport predominantly occurs through the glutamate transporter subtype, GLT-1/EAAT-2, which prevails in astrocytes. GLT-1/EAAT-2 expression is impaired in many acute and chronic brain diseases, leading to increases in extracellular glutamate and subsequent excitotoxic neuronal cell death. An obvious therapeutical approach to prevent glutamate-induced brain damage would be targeting GLT-1/EAAT-2 expression. Since so far, insights into the mechanisms modulating GLT-1/EAAT-2 expression mostly originated from work with rat astrocytes, we now sought to determine whether this modulatory network would also apply to humans. To this end, we have cloned the previously unknown rat GLT-1/EAAT-2 promoter and compared it to the human promoter sequence. In reporter assays, the cloned 2.7-kb region immediately flanking the 5'-end of the rat GLT-1/EAAT-2 gene allowed for similar increases in constitutive gene expression as the human promoter sequence. Sequence analysis demonstrated the presence of highly conserved regions on the rat and human GLT-1/EAAT-2 promoters, which turned out to be likewise essential for constitutive GLT-1/EAAT-2 expression, stimulation of gene transcription by EGF, TGFalpha, and PACAP as well as inhibition of gene transcription by TNFalpha. Intriguingly, endothelin-1 which inhibits endogenous GLT-1/EAAT-2 expression, promoted activity of both rat and human reporter constructs, indicating the existence of (an) inhibitory mechanism(s) not operational in the reporter gene assay. Our findings establish close similarities in the regulation of GLT-1/EAAT-2 expression in rat and man and, hence, validate rat astrocytes as an assay system for studying the molecular mechanisms affecting glutamate homeostasis in the healthy and diseased human brain.
在脊椎动物中枢神经系统中,谷氨酸转运主要通过谷氨酸转运体亚型 GLT-1/EAAT-2 进行,该亚型在星形胶质细胞中占优势。GLT-1/EAAT-2 的表达在许多急性和慢性脑部疾病中受损,导致细胞外谷氨酸增加,随后发生兴奋性神经元细胞死亡。预防谷氨酸引起的脑损伤的一种明显治疗方法是针对 GLT-1/EAAT-2 的表达。由于迄今为止,调节 GLT-1/EAAT-2 表达的机制的见解主要来自于对大鼠星形胶质细胞的研究,因此我们现在试图确定该调节网络是否也适用于人类。为此,我们克隆了以前未知的大鼠 GLT-1/EAAT-2 启动子,并将其与人类启动子序列进行比较。在报告基因实验中,克隆的 2.7kb 区域紧邻大鼠 GLT-1/EAAT-2 基因的 5'-端,允许类似的组成型基因表达增加,如同人类启动子序列一样。序列分析表明,大鼠和人类 GLT-1/EAAT-2 启动子上存在高度保守的区域,这些区域对于组成型 GLT-1/EAAT-2 表达、EGF、TGFalpha 和 PACAP 刺激基因转录以及 TNFalpha 抑制基因转录同样重要。有趣的是,内皮素-1 抑制内源性 GLT-1/EAAT-2 的表达,但促进大鼠和人类报告基因构建体的活性,表明存在(一种)在报告基因检测中不起作用的抑制机制。我们的发现确立了大鼠和人类 GLT-1/EAAT-2 表达调控的密切相似性,因此验证了大鼠星形胶质细胞作为研究影响健康和患病人类大脑谷氨酸动态平衡的分子机制的检测系统。