Lack Nicholas, Gerhardinger Ursula
Bayerische Arbeitsgemeinschaft für Qualitätssicherung, München.
Z Evid Fortbild Qual Gesundhwes. 2009;103(8):536-41. doi: 10.1016/j.zefq.2009.07.008.
Vertical bar charts depicting unit event rates sorted in ascending order enjoy widespread usage in external quality assurance. Unfortunately they suggest a spurious ranking resulting from instability in the percentile distribution chiefly caused by varying denominators. The popular remedy of simply excluding units below a minimum threshold would solve the problem only partially since units with few operations per annum may evade evaluation altogether merely by the grace of their size. Compared with alternative solutions reviewed in this article Spiegelhalter's funnel plots exhibit clear advantages over statistical control charts or Bayesian modelling. A major drawback of control charts at present is that data are still widely transferred on a yearly rather than a quarterly or even monthly basis. The chief disadvantage of Bayesian modelling lies in the difficulty of obtaining consensus on the required prior distributions. Funnel plots on the other hand provide a flexible and sample size dependent uniform approach while at the same time offering an intuitive interpretation of volume effects. The addition of control and warning limits allows for formal assessment of deviations from target values.
在外部质量保证中,以升序排列单位事件发生率的垂直条形图被广泛使用。不幸的是,它们暗示了一种虚假的排名,这是由于百分位数分布的不稳定性主要由不同的分母引起的。简单地排除低于最低阈值的单位这种常用补救方法只能部分解决问题,因为每年手术量少的单位可能仅仅由于其规模而完全逃避评估。与本文中回顾的其他解决方案相比,斯皮格尔哈特的漏斗图比统计控制图或贝叶斯建模具有明显优势。目前控制图的一个主要缺点是数据仍然广泛按年度而不是按季度甚至按月传输。贝叶斯建模的主要缺点在于难以就所需的先验分布达成共识。另一方面,漏斗图提供了一种灵活且依赖样本量的统一方法,同时对量的影响提供直观解释。添加控制限和警告限允许对与目标值的偏差进行正式评估。