Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
J Am Chem Soc. 2010 Jan 13;132(1):202-7. doi: 10.1021/ja905934c.
Conventional NMR structure determination requires nearly complete assignment of the cross peaks of a refined NOESY peak list. Depending on the size of the protein and quality of the spectral data, this can be a time-consuming manual process requiring several rounds of peak list refinement and structure determination. Programs such as Aria, CYANA, and AutoStructure can generate models using unassigned NOESY data but are very sensitive to the quality of the input peak lists and can converge to inaccurate structures if the signal-to-noise of the peak lists is low. Here, we show that models with high accuracy and reliability can be produced by combining the strengths of the high-resolution structure prediction program Rosetta with global measures of the agreement between structure models and experimental data. A first round of models generated using CS-Rosetta (Rosetta supplemented with backbone chemical shift information) are filtered on the basis of their goodness-of-fit with unassigned NOESY peak lists using the DP-score, and the best fitting models are subjected to high resolution refinement with the Rosetta rebuild-and-refine protocol. This hybrid approach uses both local backbone chemical shift and the unassigned NOESY data to direct Rosetta trajectories toward the native structure and produces more accurate models than AutoStructure/CYANA or CS-Rosetta alone, particularly when using raw unedited NOESY peak lists. We also show that when accurate manually refined NOESY peak lists are available, Rosetta refinement can consistently increase the accuracy of models generated using CYANA and AutoStructure.
传统的 NMR 结构测定需要几乎完全分配精修后的 NOESY 峰列表的交叉峰。这取决于蛋白质的大小和光谱数据的质量,可能是一个耗时的手动过程,需要几轮峰列表精修和结构测定。Aria、CYANA 和 AutoStructure 等程序可以使用未分配的 NOESY 数据生成模型,但对输入峰列表的质量非常敏感,如果峰列表的信噪比低,它们可能会收敛到不准确的结构。在这里,我们展示了通过将高分辨率结构预测程序 Rosetta 的优势与结构模型与实验数据之间的全局一致性度量相结合,可以生成具有高精度和高可靠性的模型。第一轮使用 CS-Rosetta(补充了骨架化学位移信息的 Rosetta)生成的模型根据它们与未分配的 NOESY 峰列表的拟合度使用 DP 得分进行过滤,最佳拟合模型使用 Rosetta rebuild-and-refine 协议进行高分辨率精修。这种混合方法既使用局部骨架化学位移又使用未分配的 NOESY 数据来引导 Rosetta 轨迹朝向天然结构,并且比 AutoStructure/CYANA 或 CS-Rosetta 单独使用时产生更准确的模型,尤其是在使用原始未经编辑的 NOESY 峰列表时。我们还表明,当有准确的手动精修的 NOESY 峰列表时,Rosetta 精修可以一致地提高使用 CYANA 和 AutoStructure 生成的模型的准确性。