Suppr超能文献

形成配合物的双分子取代反应中的转动效应:量子力学方法。

Rotational effects in complex-forming bimolecular substitution reactions: A quantum-mechanical approach.

机构信息

Institut für Physikalische Chemie, Universität Göttingen, Germany.

出版信息

J Chem Phys. 2009 Dec 14;131(22):224303. doi: 10.1063/1.3264684.

Abstract

The quantum dynamics of the complex-forming S(N)2 reaction Cl(-)+CH(3)Br-->ClCH(3)+Br(-) is studied with emphasis on rotational effects. The pseudotriatomic system Cl-Me-Br is treated with a corresponding three-dimensional (3D) potential energy surface as a function of the two scattering coordinates and the enclosed angle where the geometry of the methyl group Me is optimized at each point. The 3D space is divided into three different parts, the interaction region, an intermediate region, and the asymptotic region. In line with simple classical-mechanical arguments and previous classical trajectory calculations, initial rotational motion of CH(3)Br seemingly decreases the reaction probability. However, the dynamical inclusion of the rotational degree of freedom and the presence of the many rovibrational product states overall lead to a large increase in reactivity compared to our previous collinear study on this reaction. If the reactant is rotationally excited, the higher vibrational product states are depleted in favor of lower-lying levels. Starting the reaction with rotationless reactants may end up in significant rotational excitation in the product molecules (translation-to-rotation energy transfer). On the other hand, initial rotational energy in rotationally highly excited reactants is to a large amount converted into translational and vibrational energy. The average amount of rotational energy in the products shows a twofold vibrational excitation-independent saturation (i.e., memorylessness), with respect to both initial rotational excitation and translational energy. Since only about one-half of all reactant states end in rotationless products, the reaction probability should be increased by a factor of 2; the actually larger reactivity points to other dynamical effects that play an important role in the reaction.

摘要

复杂形成 S(N)2 反应 Cl(-)+CH(3)Br-->ClCH(3)+Br(-) 的量子动力学研究强调了旋转效应。Cl-Me-Br 伪三原子体系被处理为一个三维(3D)势能面,作为两个散射坐标和封闭角的函数,其中甲基 Me 的几何形状在每个点都进行了优化。3D 空间被分为三个不同的部分,相互作用区域、中间区域和渐近区域。根据简单的经典力学论点和以前的经典轨迹计算,CH(3)Br 的初始旋转运动似乎会降低反应概率。然而,由于动态包含了旋转自由度,并且存在许多转动振动产物状态,与我们之前对该反应的共线研究相比,反应性总体上有了很大的提高。如果反应物是旋转激发的,那么较高的振动产物状态将被耗尽,有利于较低的能级。从无旋转反应物开始反应可能会导致产物分子中发生显著的旋转激发(从平移到旋转的能量转移)。另一方面,初始旋转能量在旋转高度激发的反应物中会大量转化为平移和振动能量。产物中旋转能量的平均量表现出与初始旋转激发和平移能量无关的两倍振动激发独立性饱和(即无记忆性)。由于只有大约一半的反应物状态以无旋转产物结束,反应概率应该增加 2 倍;实际上更大的反应性表明其他动力学效应在反应中起着重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验