Department of Physics, University of Patras, GR-26500 Patras, Greece.
J Chem Phys. 2009 Dec 14;131(22):224310. doi: 10.1063/1.3267046.
It is illustrated here by ab initio calculations based on density functional theory and other high level methods that the high stability of the icosahedral Sn(12) (2-) dianion known as stannaspherene, reflects stability toward ionization rather than cohesion. This could be also connected with novel fluxional rearrangements and paths of Sn(12) (1-) leading eventually to Sn(12) (2-) involving charge transfer. In view of the very similar structural and electronic properties with the corresponding isovalent borane (B(12)H(12))(2-), it is demonstrated that stannaspherene can be further rationalized and functionalized on the basis of an isolobal analogy between group 14 clusters and isovalent boranes, carboranes, and bisboranes. Such analogy is of the same nature with analogous isolobal and isovalent similarities between silicon, hydrogenated silicon-carbon clusters and deltahedral boranes and carboranes, which the present author, scoptically and synoptically, has described as the "boron connection." It is predicted and verified theoretically: First, that the isovalent Bi(2)Sn(10) and Sb(2)Sn(10) clusters, considered as the microscopic analogs of tin-bismuth alloys, are very stable (more stable than stannaspherene itself) very symmetric and isolobal to Sn(12) (2-); and second, that embedded clusters of the form M@Sn(12) (2-), M@Bi(2)Sn(10), M=Pt,Pd are very stable and highly symmetrical (I(h) and D(5d) respectively) with large highest occupied-lowest unoccupied molecular orbital gaps and very large embedding energies of the order of 5-6 eV. It is furthermore predicted that Pt@Sn(12) (2-) and Pt@Bi(2)Sn(10) can be synthesized in view of their higher stability compared to Pt@Pb(12) (2-) which has already been synthesized. The marginal energy difference of 0.03 eV between the meta- and the para-isomer of Bi(2)Sn(10) indicates a fluxional behavior with respect to Bi-Sn interchange which should be related with the Sn(12) (1-) fluxionality leading eventually to Sn(12) (2-). This rearrangement is also associated with a strange aromatic behavior. The same type of Bi-Sn fluxionality is also encountered in higher energy structures. Due to the "inert pair effect" in tin, the validity of the isolobal analogy is much stronger and fully valid compared to isovalent species based on germanium or silicon, such as Ge(12) (2-), Bi(2)Ge(10), and Ge(10)C(2)H(2) and Si(12) (2-), Bi(2)Si(10), and Si(10)C(2)H(2). The present ideas are in full agreement with available experiments and suggest even further functionalization of stannaspherene, analogous to metaloboranes, metalocarboranes, and stannaboranes with several potential applications.
这里通过基于密度泛函理论和其他高级方法的从头算表明,已知的具有高度稳定性的 icosahedral Sn(12) (2-) 二负离子,如锡球,其稳定性反映在电离而不是凝聚上。这也可能与新颖的通量重排和 Sn(12) (1-) 的路径有关,最终导致涉及电荷转移的 Sn(12) (2-)。鉴于与相应的等电子硼烷 (B(12)H(12))(2-) 具有非常相似的结构和电子性质,表明锡球可以在 14 族簇和等电子硼烷、碳硼烷和双硼烷之间的等类似推理性和功能化的基础上进一步合理化。这种类比与硅、氢化硅-碳簇与 Deltahedral 硼烷和碳硼烷之间类似的等类似和等电子相似性具有相同的性质,作者已经从 scopic 和 synoptic 的角度将其描述为“硼连接”。理论上预测和验证:首先,等电子 Bi(2)Sn(10) 和 Sb(2)Sn(10) 簇,被认为是锡-铋合金的微观类似物,非常稳定(比锡球本身更稳定),非常对称且与 Sn(12) (2-) 等类似;其次,M@Sn(12) (2-)、M@Bi(2)Sn(10)(M=Pt、Pd)的嵌入簇非常稳定且高度对称(分别为 I(h) 和 D(5d)),具有较大的最高占据最低未占据分子轨道间隙和较大的嵌入能,约为 5-6 eV。此外,由于与已经合成的 Pt@Pb(12) (2-) 相比,Pt@Sn(12) (2-) 和 Pt@Bi(2)Sn(10) 具有更高的稳定性,因此可以预测它们可以被合成。Bi(2)Sn(10) 的对位和间位异构体之间的 0.03 eV 的边缘能差表明存在 Bi-Sn 交换的通量重排行为,这应该与最终导致 Sn(12) (2-) 的 Sn(12) (1-) 通量重排有关。这种重排也与一种奇怪的芳香行为有关。Bi(2)Sn(10) 的更高能量结构中也存在相同类型的 Bi-Sn 通量重排。由于锡的“惰性对效应”,等类似物的有效性比基于锗或硅的等电子物种要强得多且完全有效,例如 Ge(12) (2-)、Bi(2)Ge(10) 和 Ge(10)C(2)H(2)以及 Si(12) (2-)、Bi(2)Si(10) 和 Si(10)C(2)H(2)。目前的想法与现有实验完全一致,并进一步建议对锡球进行功能化,类似于金属硼烷、金属碳硼烷和锡硼烷,具有多种潜在应用。