Suppr超能文献

大鼠骨的压缩轴向力学性能作为骨体积分数、表观密度和基于微 CT 的骨密度的函数。

Compressive axial mechanical properties of rat bone as functions of bone volume fraction, apparent density and micro-ct based mineral density.

机构信息

Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.

出版信息

J Biomech. 2010 Mar 22;43(5):953-60. doi: 10.1016/j.jbiomech.2009.10.047. Epub 2009 Dec 8.

Abstract

Mechanical testing has been regarded as the gold standard to investigate the effects of pathologies on the structure-function properties of the skeleton. With recent advances in computing power of personal computers, virtual alternatives to mechanical testing are gaining acceptance and use. We have previously introduced such a technique called structural rigidity analysis to assess mechanical strength of skeletal tissue with defects. The application of this technique is predicated upon the use of relationships defining the strength of bone as a function of its density for a given loading mode. We are to apply this technique in rat models to assess their compressive skeletal response subjected to a host of biological and pharmaceutical stimulations. Therefore, the aim of this study is to derive a relationship expressing axial compressive mechanical properties of rat cortical and cancellous bone as a function of equivalent bone mineral density, bone volume fraction or apparent density over a range of normal and pathologic bones. We used bones from normal, ovariectomized and partially nephrectomized animals. All specimens underwent micro-computed tomographic imaging to assess bone morphometric and densitometric indices and uniaxial compression to failure. We obtained univariate relationships describing 71-78% of the mechanical properties of rat cortical and cancellous bone based on equivalent mineral density, bone volume fraction or apparent density over a wide range of density and common skeletal pathologies. The relationships reported in this study can be used in the structural rigidity analysis introduced by the authors to provide a non-invasive method to assess the compressive strength of bones affected by pathology and/or treatment options.

摘要

机械测试一直被认为是研究病理学对骨骼结构-功能特性影响的金标准。随着个人计算机计算能力的提高,虚拟替代机械测试的方法越来越被接受和使用。我们之前介绍了一种称为结构刚性分析的技术,用于评估有缺陷的骨骼组织的机械强度。该技术的应用基于使用定义骨骼强度与其密度之间关系的方法,适用于特定的加载模式。我们将在大鼠模型中应用该技术,以评估它们在受到多种生物和药物刺激下的压缩骨骼反应。因此,本研究的目的是得出一个表达式,将大鼠皮质骨和松质骨的轴向压缩力学性能表示为等效骨矿物质密度、骨体积分数或表观密度的函数,涵盖正常和病理骨骼的范围。我们使用来自正常、去卵巢和部分肾切除动物的骨骼。所有标本均进行微计算机断层扫描成像,以评估骨形态计量和密度计量指数,并进行单轴压缩至失效。我们获得了基于等效矿物质密度、骨体积分数或表观密度的单变量关系,描述了大鼠皮质骨和松质骨在广泛的密度和常见骨骼病理范围内 71-78%的力学性能。本研究中报告的关系可用于作者提出的结构刚性分析,提供一种非侵入性方法来评估受病理和/或治疗选择影响的骨骼的压缩强度。

相似文献

2
Tensile properties of rat femoral bone as functions of bone volume fraction, apparent density and volumetric bone mineral density.
J Biomech. 2011 Sep 2;44(13):2482-8. doi: 10.1016/j.jbiomech.2011.06.016. Epub 2011 Jul 19.
3
An improved method to assess torsional properties of rodent long bones.
J Biomech. 2009 Aug 7;42(11):1720-5. doi: 10.1016/j.jbiomech.2009.04.019. Epub 2009 May 17.
5
Hierarchical analysis and multi-scale modelling of rat cortical and trabecular bone.
J R Soc Interface. 2015 May 6;12(106). doi: 10.1098/rsif.2015.0070.
6
Prediction of Young׳s modulus of trabeculae in microscale using macro-scale׳s relationships between bone density and mechanical properties.
J Mech Behav Biomed Mater. 2014 Aug;36:120-34. doi: 10.1016/j.jmbbm.2014.04.011. Epub 2014 Apr 29.
7
Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone.
J Biomech. 2005 Jun;38(6):1229-37. doi: 10.1016/j.jbiomech.2004.06.007.
8
Microstructural, densitometric and metabolic variations in bones from rats with normal or altered skeletal states.
PLoS One. 2013 Dec 17;8(12):e82709. doi: 10.1371/journal.pone.0082709. eCollection 2013.
9
Constructing anisotropic finite element model of bone from computed tomography (CT).
Biomed Mater Eng. 2014;24(6):2619-26. doi: 10.3233/BME-141078.
10
Shortcomings of DXA to assess changes in bone tissue density and microstructure induced by metabolic bone diseases in rat models.
Osteoporos Int. 2009 Jan;20(1):123-32. doi: 10.1007/s00198-008-0632-0. Epub 2008 May 31.

引用本文的文献

1
Predicting the Risk for Pathological Fracture in Bone Metastases.
Curr Oncol. 2025 May 28;32(6):309. doi: 10.3390/curroncol32060309.
2
Development of a subject-specific finite element analysis workflow to assess local biomechanics during segmental bone defect healing.
J Mech Behav Biomed Mater. 2025 Sep;169:107065. doi: 10.1016/j.jmbbm.2025.107065. Epub 2025 May 19.
5
Pathological Characteristics of Monosodium Iodoacetate-Induced Osteoarthritis in Rats.
Tissue Eng Regen Med. 2023 Jun;20(3):435-446. doi: 10.1007/s13770-023-00520-5. Epub 2023 Feb 21.
7
Bone formation around unstable implants is enhanced by a WNT protein therapeutic in a preclinical in vivo model.
Clin Oral Implants Res. 2020 Nov;31(11):1125-1137. doi: 10.1111/clr.13659. Epub 2020 Sep 14.
8
Effects of condensation and compressive strain on implant primary stability: A longitudinal, in vivo, multiscale study in mice.
Bone Joint Res. 2020 May 16;9(2):60-70. doi: 10.1302/2046-3758.92.BJR-2019-0161. eCollection 2020 Feb.
9
Inhibition of MSTN signal pathway may participate in LIPUS preventing bone loss in ovariectomized rats.
J Bone Miner Metab. 2020 Jan;38(1):14-26. doi: 10.1007/s00774-019-01029-5. Epub 2019 Aug 14.
10
System for application of controlled forces on dental implants in rat maxillae: Influence of the number of load cycles on bone healing.
J Biomed Mater Res B Appl Biomater. 2020 Apr;108(3):965-975. doi: 10.1002/jbm.b.34449. Epub 2019 Jul 31.

本文引用的文献

1
Quantitative micro-computed tomography: a non-invasive method to assess equivalent bone mineral density.
Bone. 2008 Aug;43(2):302-311. doi: 10.1016/j.bone.2008.04.009. Epub 2008 Apr 30.
2
Noninvasive assessments of bone strength.
Curr Opin Endocrinol Diabetes Obes. 2007 Dec;14(6):451-7. doi: 10.1097/MED.0b013e3282f154a7.
3
Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality.
Med Eng Phys. 2007 Dec;29(10):1096-105. doi: 10.1016/j.medengphy.2006.11.002. Epub 2007 Jan 16.
4
Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength.
Bone. 2007 Mar;40(3):767-74. doi: 10.1016/j.bone.2006.10.025. Epub 2006 Dec 15.
5
Prediction of strength and strain of the proximal femur by a CT-based finite element method.
J Biomech. 2007;40(8):1745-53. doi: 10.1016/j.jbiomech.2006.08.003. Epub 2006 Oct 10.
6
Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism.
Nat Genet. 2006 Nov;38(11):1310-5. doi: 10.1038/ng1905. Epub 2006 Oct 8.
7
The effects of side-artifacts on the elastic modulus of trabecular bone.
J Biomech. 2006;39(11):1955-63. doi: 10.1016/j.jbiomech.2006.05.012. Epub 2006 Jul 5.
9
Predicting fracture through benign skeletal lesions with quantitative computed tomography.
J Bone Joint Surg Am. 2006 Jan;88(1):55-70. doi: 10.2106/JBJS.D.02600.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验