Agriculture and Agri-Food Canada, Ottawa, ON, Canada K1A 0C6.
Sci Total Environ. 2010 Jan 15;408(4):873-83. doi: 10.1016/j.scitotenv.2009.10.063. Epub 2009 Dec 9.
Polybrominated diphenyl ethers (PBDEs), perfluorinated alkylated substances (PFAS), and metals were monitored in tile drainage and groundwater following liquid (LMB) and dewatered municipal biosolid (DMB) applications to silty-clay loam agricultural field plots. LMB was applied (93,500 L ha(-1)) in late fall 2005 via surface spreading on un-tilled soil (SS(LMB)), and a one-pass aerator-based pre-tillage prior to surface spreading (AerWay SSD) (A). The DMB was applied (8 Mg d wha(-1)) in early summer 2006 on the same plots by injecting DMB beneath the soil surface (DI), and surface spreading on un-tilled soil (SS(DMB)). Key PBDE congeners (BDE-47, -99, -100, -153, -154, -183, -209) comprising 97% of total PBDE in LMB, had maximum tile effluent concentrations ranging from 6 to 320 ng L(-1) during application-induced tile flow. SS(LMB) application-induced tile mass loads for these PBDE congeners were significantly higher than those for control (C) plots (no LMB) (p<0.05), but not A plots (p>0.05). PBDE mass loss via tile (0-2h post-application) as a percent of mass applied was approximately 0.04-0.1% and approximately 0.8-1.7% for A and SS(LMB), respectively. Total PBDE loading to soil via LMB and DMB application was 0.0018 and 0.02 kg total PBDE ha(-1)yr(-1), respectively. Total PBDE concentration in soil (0-0.2m) after both applications was 115 ng g(-1)dw, (sampled 599 days and 340 days post LMB and DMB applications respectively). Of all the PFAS compounds, only PFOS (max concentration=17 ng L(-1)) and PFOA (12 ng L(-1)) were found above detectable limits in tile drainage from the application plots. Mass loads of metals in tile for the LMB application-induced tile hydrograph event, and post-application concentrations of metals in groundwater, showed significant (p<0.05) land application treatment effects (SS(LMB)>A>C for tile and SS(LMB) and A>C for groundwater for most results). Following DMB application, no significant differences in metal mass loads in tile were found between SS(DMB) and DI treatments (PBDE/PFAS were not measured). But for many metals (Cu, Se, Cd, Mo, Hg and Pb) both SS(DMB) and DI loads were significantly higher than those from C, but only during <100 days post DMB application. Clearly, pre-tilling the soil (e.g., A) prior to surface application of LMB will reduce application-based PBDE and metal contamination to tile drainage and shallow groundwater. Directly injecting DMB in soil does not significantly increase metal loading to tile drains relative to SS(DMB), thus, DI should be considered a DMB land application option.
多溴二苯醚 (PBDEs)、全氟烷基化物质 (PFAS) 和金属在液态 (LMB) 和脱水市政生物固体 (DMB) 施用于粉质粘壤土农田后,通过沟渠排水和地下水进行了监测。LMB(93500 L ha(-1))于 2005 年秋季通过在未耕土壤上表面撒布(SS(LMB))和在表面撒布前使用一次通过的空气搅拌器进行预耕(AerWay SSD)(A)施用于土壤。DMB(8 Mg d wha(-1))于 2006 年夏季在同一地块上通过在土壤表面下注射 DMB(DI)和在未耕土壤上表面撒布(SS(DMB))进行施用于土壤。在 LMB 中占总 PBDE 的 97%的关键 PBDE 同系物(BDE-47、-99、-100、-153、-154、-183、-209)在应用诱导的沟渠流量期间,最大的沟渠流出物浓度范围为 6 至 320 ng L(-1)。与对照(C)地块(未施 LMB)相比,SS(LMB)应用诱导的这些 PBDE 同系物的沟渠质量负荷显著更高(p<0.05),但与 A 地块(p>0.05)相比则没有更高。通过沟渠(应用后 0-2 小时)损失的 PBDE 质量损失作为施用量的百分比约为 0.04-0.1%,而 A 和 SS(LMB)分别约为 0.8-1.7%。通过 LMB 和 DMB 应用向土壤施加的总 PBDE 负荷分别为 0.0018 和 0.02 kg 总 PBDE ha(-1)yr(-1)。两次应用后土壤中的总 PBDE 浓度(0-0.2m)分别为 115 ng g(-1)dw(分别在 LMB 和 DMB 应用后 599 天和 340 天采样)。在所研究的 PFAS 化合物中,仅在应用地块的沟渠排水中发现了 PFOS(最大浓度=17 ng L(-1))和 PFOA(12 ng L(-1))超过了检测限。LMB 应用诱导的沟渠水文事件中的沟渠中金属的质量负荷以及地下水后金属的浓度,显示出显著的(p<0.05)土地应用处理效应(对于大多数结果,SS(LMB)>A>C 用于沟渠,SS(LMB)和 A>C 用于地下水)。在 DMB 应用后,SS(DMB)和 DI 处理之间在沟渠中金属的质量负荷没有发现显著差异(未测量 PBDE/PFAS)。但是,对于许多金属(Cu、Se、Cd、Mo、Hg 和 Pb),SS(DMB)和 DI 负荷均明显高于 C ,但仅在 DMB 应用后<100 天。显然,在 LMB 的表面施用之前对土壤进行预耕(例如 A)将减少基于应用的 PBDE 和金属对沟渠排水和浅层地下水的污染。直接将 DMB 注入土壤不会显著增加与 SS(DMB)相比向沟渠排水中注入的金属负荷,因此,应考虑将 DI 作为 DMB 土地应用的一种选择。