Laboratory of Image Processing, University of Valladolid, E.T.S. Telecomunicaciones, 47011 Valladolid, Spain.
Med Image Anal. 2010 Apr;14(2):205-18. doi: 10.1016/j.media.2009.11.001. Epub 2009 Nov 14.
The filtering of the Diffusion Weighted Images (DWI) prior to the estimation of the diffusion tensor or other fiber Orientation Distribution Functions (ODF) has been proved to be of paramount importance in the recent literature. More precisely, it has been evidenced that the estimation of the diffusion tensor without a previous filtering stage induces errors which cannot be recovered by further regularization of the tensor field. A number of approaches have been intended to overcome this problem, most of them based on the restoration of each DWI gradient image separately. In this paper we propose a methodology to take advantage of the joint information in the DWI volumes, i.e., the sum of the information given by all DWI channels plus the correlations between them. This way, all the gradient images are filtered together exploiting the first and second order information they share. We adapt this methodology to two filters, namely the Linear Minimum Mean Squared Error (LMMSE) and the Unbiased Non-Local Means (UNLM). These new filters are tested over a wide variety of synthetic and real data showing the convenience of the new approach, especially for High Angular Resolution Diffusion Imaging (HARDI). Among the techniques presented, the joint LMMSE is proved a very attractive approach, since it shows an accuracy similar to UNLM (or even better in some situations) with a much lighter computational load.
在估计扩散张量或其他纤维方向分布函数 (ODF) 之前,对弥散加权图像 (DWI) 进行滤波已被证明在近期文献中至关重要。更确切地说,已经证明,在没有先前滤波阶段的情况下估计扩散张量会引入无法通过进一步正则化张量场来恢复的误差。已经提出了许多方法来解决这个问题,其中大多数方法都是基于分别恢复每个 DWI 梯度图像。在本文中,我们提出了一种利用 DWI 体素中联合信息的方法,即所有 DWI 通道提供的信息的总和加上它们之间的相关性。通过这种方式,所有的梯度图像都可以通过利用它们共同的一阶和二阶信息一起进行滤波。我们将这种方法应用于两种滤波器,即线性最小均方误差 (LMMSE) 和无偏非局部均值 (UNLM)。这些新的滤波器在广泛的合成和真实数据上进行了测试,展示了这种新方法的便利性,特别是对于高角度分辨率扩散成像 (HARDI)。在所提出的技术中,联合 LMMSE 被证明是一种非常有吸引力的方法,因为它显示出与 UNLM 相似的准确性(在某些情况下甚至更好),而计算负载要轻得多。