Melie-García Lester, Canales-Rodríguez Erick J, Alemán-Gómez Yasser, Lin Ching-Po, Iturria-Medina Yasser, Valdés-Hernández Pedro A
Neuroimaging Department, Cuban Neuroscience Center, Havana, Cuba.
Neuroimage. 2008 Aug 15;42(2):750-70. doi: 10.1016/j.neuroimage.2008.04.242. Epub 2008 Apr 30.
In this paper we introduce a new method to characterize the intravoxel anisotropy based on diffusion-weighted imaging (DWI). The proposed solution, under a fully Bayesian formalism, deals with the problem of joint Bayesian Model selection and parameter estimation to reconstruct the principal diffusion profiles or primary fiber orientations in a voxel. We develop an efficient stochastic algorithm based on the reversible jump Markov chain Monte Carlo (RJMCMC) method in order to perform the Bayesian computation. RJMCMC is a good choice for this problem because of its ability to jump between models of different dimensionality. This methodology provides posterior estimates of the parameters of interest (fiber orientation, diffusivities etc) unconditional of the model assumed. It also gives an empirical posterior distribution of the number of primary nerve fiber orientations given the DWI data. Different probability maps can be assessed using this methodology: 1) the intravoxel fiber orientation map (or orientational distribution function) that gives the probability of finding a fiber in a particular spatial orientation; 2) a three-dimensional map of the probability of finding a particular number of fibers in each voxel; 3) a three-dimensional MaxPro (maximum probability) map that provides the most probable number of fibers for each voxel. In order to study the performance and reliability of the presented approach, we tested it on synthetic data; an ex-vivo phantom of intersecting capillaries; and DWI data from a human subject.
在本文中,我们介绍了一种基于扩散加权成像(DWI)来表征体素内各向异性的新方法。所提出的解决方案在完全贝叶斯形式体系下,处理联合贝叶斯模型选择和参数估计问题,以重建体素中的主要扩散轮廓或初级纤维方向。我们基于可逆跳跃马尔可夫链蒙特卡罗(RJMCMC)方法开发了一种高效的随机算法,以便进行贝叶斯计算。RJMCMC是解决此问题的一个不错选择,因为它能够在不同维度的模型之间跳跃。这种方法提供了感兴趣参数(纤维方向、扩散率等)的后验估计,而不依赖于所假设的模型。它还给出了给定DWI数据时初级神经纤维方向数量的经验后验分布。使用这种方法可以评估不同的概率图:1)体素内纤维方向图(或方向分布函数),它给出了在特定空间方向找到纤维的概率;2)一个三维图,显示每个体素中找到特定数量纤维的概率;3)一个三维最大概率(MaxPro)图,它为每个体素提供最可能的纤维数量。为了研究所提出方法的性能和可靠性,我们在合成数据、交叉毛细血管的离体模型以及来自一名人类受试者的DWI数据上对其进行了测试。