Suppr超能文献

Cross-linking with bifunctional reagents and its application to the study of the molecular symmetry and the arrangement of subunits in hexameric protein oligomers.

作者信息

Azem Abdussalam, Tsfadia Yossi, Hajouj Omar, Shaked Isabella, Daniel Ezra

机构信息

Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel.

出版信息

Biochim Biophys Acta. 2010 Apr;1804(4):768-80. doi: 10.1016/j.bbapap.2009.11.024. Epub 2009 Dec 11.

Abstract

Cross-linking with a bifunctional reagent and subsequent SDS gel electrophoresis is a simple but effective method to study the symmetry and arrangement of subunits in oligomeric proteins. In this study, theoretical expressions for the description of cross-linking patterns were derived for protein homohexamers through extension of the method used for tetramers by Hajdu et al. (1976). The derived equations were used for the analysis of cross-linking by glutardialdehyde of four protein hexamers: beef liver glutamate dehydrogenase (GDH), jack bean urease, hemocyanin from the spiny lobster Panulirus pencillatus (PpHc), Escherichia coli glutamate decarboxylase (GDC) and for analysis of published data on the cross-linking of hexameric E. coli rho by dimethyl suberimidate. Best fit models showed that the subunits in the first four proteins are arranged according to D(3) symmetry in two layers, each subunit able to cross-link to three neighboring subunits for GDH and urease, or to four for PpHc and GDC. The findings indicate a dimer-of-trimers eclipsed arrangement of subunits for GDH and urease and a trimer-of-dimers staggered one for PpHc and GDC. In rho, the subunits are arranged according to D(3) symmetry in a trimer-of-dimers ring. The conclusions from cross-linking of GDH and GDC, PpHc and rho are consistent with results from X-ray crystal structure, those for urease with findings from electron microscopy.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验