Department of Chemistry and Biochemistry, University of Colorado, Boulder, Campus Box 215, Boulder, CO 80309-0215, USA.
J Mol Biol. 2010 Feb 26;396(3):761-72. doi: 10.1016/j.jmb.2009.12.007. Epub 2009 Dec 16.
The SAM-I riboswitch is a cis-acting element of genetic control found in bacterial mRNAs that specifically binds S-adenosylmethionine (SAM). We previously determined the 2.9-A X-ray crystal structure of the effector-binding domain of this RNA element, revealing details of RNA-ligand recognition. To improve this structure, variations were made to the RNA sequence to alter lattice contacts, resulting in a 0.5-A improvement in crystallographic resolution and allowing for a more accurate refinement of the crystallographic model. The basis for SAM specificity was addressed by a structural analysis of the RNA complexed to S-adenosylhomocysteine (SAH) and sinefungin and by measuring the affinity of SAM and SAH for a series of mutants using isothermal titration calorimetry. These data illustrate the importance of two universally conserved base pairs in the RNA that form electrostatic interactions with the positively charged sulfonium group of SAM, thereby providing a basis for discrimination between SAM and SAH.
SAM-I 核糖开关是细菌 mRNA 中一种顺式作用的遗传控制元件,可特异性结合 S-腺苷甲硫氨酸 (SAM)。我们之前已经确定了该 RNA 元件效应物结合域的 2.9-A X 射线晶体结构,揭示了 RNA-配体识别的细节。为了改进该结构,我们对 RNA 序列进行了修改以改变晶格接触,从而将晶体学分辨率提高了 0.5-A,并允许对晶体学模型进行更准确的精修。通过对与 S-腺苷同型半胱氨酸 (SAH) 和 sinefungin 结合的 RNA 的结构分析以及通过使用等温滴定量热法测量 SAM 和 SAH 对一系列突变体的亲和力,解决了 SAM 特异性的基础问题。这些数据说明了 RNA 中两个普遍保守的碱基对的重要性,它们与 SAM 的正电荷锍基团形成静电相互作用,从而为 SAM 和 SAH 之间的区分提供了基础。