Suppr超能文献

SAM-VI RNAs 选择性地结合 S-腺苷甲硫氨酸,表现出与 SAM-III 核糖开关的相似性。

SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches.

机构信息

a Howard Hughes Medical Institute, Yale University , New Haven , CT , USA.

b Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA.

出版信息

RNA Biol. 2018 Mar 4;15(3):371-378. doi: 10.1080/15476286.2017.1399232. Epub 2018 Feb 12.

Abstract

Five distinct riboswitch classes that regulate gene expression in response to the cofactor S-adenosylmethionine (SAM) or its metabolic breakdown product S-adenosylhomocysteine (SAH) have been reported previously. Collectively, these SAM- or SAH-sensing RNAs constitute the most abundant collection of riboswitches, and are found in nearly every major bacterial lineage. Here, we report a potential sixth member of this pervasive riboswitch family, called SAM-VI, which is predominantly found in Bifidobacterium species. SAM-VI aptamers selectively bind the cofactor SAM and strongly discriminate against SAH. The consensus sequence and structural model for SAM-VI share some features with the consensus model for the SAM-III riboswitch class, whose members are mainly found in lactic acid bacteria. However, there are sufficient differences between the two classes such that current bioinformatics methods separately cluster representatives of the two motifs. These findings highlight the abundance of RNA structures that can form to selectively recognize SAM, and showcase the ability of RNA to utilize diverse strategies to perform similar biological functions.

摘要

先前已有报告称,有五类不同的核糖开关可响应辅助因子 S-腺苷甲硫氨酸 (SAM) 或其代谢分解产物 S-腺苷同型半胱氨酸 (SAH) 来调节基因表达。总的来说,这些 SAM 或 SAH 感应 RNA 构成了最丰富的核糖开关集合,并且几乎存在于每一个主要的细菌谱系中。在这里,我们报告了这一普遍存在的核糖开关家族的第六个成员,称为 SAM-VI,它主要存在于双歧杆菌属物种中。SAM-VI 适体选择性地结合辅助因子 SAM,并强烈区分 SAH。SAM-VI 的一致序列和结构模型与 SAM-III 核糖开关类别的一致模型具有一些共同特征,后者的成员主要存在于乳酸菌中。然而,这两个类别之间存在足够的差异,以至于当前的生物信息学方法分别对这两个基序的代表进行聚类。这些发现突出了能够选择性识别 SAM 的 RNA 结构的丰富性,并展示了 RNA 利用多种策略来执行类似生物学功能的能力。

相似文献

1
SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches.
RNA Biol. 2018 Mar 4;15(3):371-378. doi: 10.1080/15476286.2017.1399232. Epub 2018 Feb 12.
2
Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine.
Biochem Cell Biol. 2008 Apr;86(2):157-68. doi: 10.1139/O08-008.
3
The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches.
RNA. 2008 May;14(5):822-8. doi: 10.1261/rna.988608. Epub 2008 Mar 27.
5
NMR resonance assignments for the SAM/SAH-binding riboswitch RNA bound to S-adenosylhomocysteine.
Biomol NMR Assign. 2018 Oct;12(2):329-334. doi: 10.1007/s12104-018-9834-3. Epub 2018 Jul 26.
6
A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria.
RNA. 2009 Nov;15(11):2046-56. doi: 10.1261/rna.1824209. Epub 2009 Sep 23.
7
Structural basis for diversity in the SAM clan of riboswitches.
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6624-9. doi: 10.1073/pnas.1312918111. Epub 2014 Apr 21.
8
SAM-VI riboswitch structure and signature for ligand discrimination.
Nat Commun. 2019 Dec 16;10(1):5728. doi: 10.1038/s41467-019-13600-9.
9
Nonlocal helix formation is key to understanding S-adenosylmethionine-1 riboswitch function.
Biophys J. 2009 Jan;96(2):L7-9. doi: 10.1016/j.bpj.2008.10.033.
10
The structure of the SAM/SAH-binding riboswitch.
Nucleic Acids Res. 2019 Mar 18;47(5):2654-2665. doi: 10.1093/nar/gky1283.

引用本文的文献

1
Observation of SAM-VI Riboswitch Dynamics Using Single-Molecule FRET.
Biomolecules. 2025 Jun 9;15(6):841. doi: 10.3390/biom15060841.
3
SAM-VI Riboswitch Conformation Change Requires Peripheral Helix Formation.
Biomolecules. 2024 Jun 23;14(7):742. doi: 10.3390/biom14070742.
4
A spermidine riboswitch class in bacteria exploits a close variant of an aptamer for the enzyme cofactor S-adenosylmethionine.
Cell Rep. 2023 Dec 26;42(12):113571. doi: 10.1016/j.celrep.2023.113571. Epub 2023 Dec 12.
5
Magnesium ions mediate ligand binding and conformational transition of the SAM/SAH riboswitch.
Commun Biol. 2023 Jul 31;6(1):791. doi: 10.1038/s42003-023-05175-5.
6
Linking folding dynamics and function of SAM/SAH riboswitches at the single molecule level.
Nucleic Acids Res. 2023 Sep 22;51(17):8957-8969. doi: 10.1093/nar/gkad633.
8
Magnesium ions mediate ligand binding and conformational transition of the SAM/SAH riboswitch.
bioRxiv. 2023 Mar 12:2023.03.12.532287. doi: 10.1101/2023.03.12.532287.
9
Architectures and complex functions of tandem riboswitches.
RNA Biol. 2022 Jan;19(1):1059-1076. doi: 10.1080/15476286.2022.2119017.
10
Incoherent dual regulation by a SAM-II riboswitch controlling translation at a distance.
RNA Biol. 2022 Jan;19(1):980-995. doi: 10.1080/15476286.2022.2110380.

本文引用的文献

1
Detection of 224 candidate structured RNAs by comparative analysis of specific subsets of intergenic regions.
Nucleic Acids Res. 2017 Oct 13;45(18):10811-10823. doi: 10.1093/nar/gkx699.
2
Riboswitch diversity and distribution.
RNA. 2017 Jul;23(7):995-1011. doi: 10.1261/rna.061234.117. Epub 2017 Apr 10.
3
Bioinformatic analysis of riboswitch structures uncovers variant classes with altered ligand specificity.
Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):E2077-E2085. doi: 10.1073/pnas.1619581114. Epub 2017 Mar 6.
4
The Biology of Free Guanidine As Revealed by Riboswitches.
Biochemistry. 2017 Jan 17;56(2):345-347. doi: 10.1021/acs.biochem.6b01269. Epub 2017 Jan 6.
5
Biochemical Validation of a Third Guanidine Riboswitch Class in Bacteria.
Biochemistry. 2017 Jan 17;56(2):359-363. doi: 10.1021/acs.biochem.6b01271. Epub 2017 Jan 6.
6
Biochemical Validation of a Second Guanidine Riboswitch Class in Bacteria.
Biochemistry. 2017 Jan 17;56(2):352-358. doi: 10.1021/acs.biochem.6b01270. Epub 2017 Jan 6.
7
Metabolism of Free Guanidine in Bacteria Is Regulated by a Widespread Riboswitch Class.
Mol Cell. 2017 Jan 19;65(2):220-230. doi: 10.1016/j.molcel.2016.11.019. Epub 2016 Dec 15.
8
Riboswitch-Mediated Gene Regulation: Novel RNA Architectures Dictate Gene Expression Responses.
Annu Rev Microbiol. 2016 Sep 8;70:361-74. doi: 10.1146/annurev-micro-091014-104306.
9
New classes of self-cleaving ribozymes revealed by comparative genomics analysis.
Nat Chem Biol. 2015 Aug;11(8):606-10. doi: 10.1038/nchembio.1846. Epub 2015 Jul 13.
10
Structural, functional, and taxonomic diversity of three preQ1 riboswitch classes.
Chem Biol. 2014 Jul 17;21(7):880-889. doi: 10.1016/j.chembiol.2014.05.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验