a Howard Hughes Medical Institute, Yale University , New Haven , CT , USA.
b Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA.
RNA Biol. 2018 Mar 4;15(3):371-378. doi: 10.1080/15476286.2017.1399232. Epub 2018 Feb 12.
Five distinct riboswitch classes that regulate gene expression in response to the cofactor S-adenosylmethionine (SAM) or its metabolic breakdown product S-adenosylhomocysteine (SAH) have been reported previously. Collectively, these SAM- or SAH-sensing RNAs constitute the most abundant collection of riboswitches, and are found in nearly every major bacterial lineage. Here, we report a potential sixth member of this pervasive riboswitch family, called SAM-VI, which is predominantly found in Bifidobacterium species. SAM-VI aptamers selectively bind the cofactor SAM and strongly discriminate against SAH. The consensus sequence and structural model for SAM-VI share some features with the consensus model for the SAM-III riboswitch class, whose members are mainly found in lactic acid bacteria. However, there are sufficient differences between the two classes such that current bioinformatics methods separately cluster representatives of the two motifs. These findings highlight the abundance of RNA structures that can form to selectively recognize SAM, and showcase the ability of RNA to utilize diverse strategies to perform similar biological functions.
先前已有报告称,有五类不同的核糖开关可响应辅助因子 S-腺苷甲硫氨酸 (SAM) 或其代谢分解产物 S-腺苷同型半胱氨酸 (SAH) 来调节基因表达。总的来说,这些 SAM 或 SAH 感应 RNA 构成了最丰富的核糖开关集合,并且几乎存在于每一个主要的细菌谱系中。在这里,我们报告了这一普遍存在的核糖开关家族的第六个成员,称为 SAM-VI,它主要存在于双歧杆菌属物种中。SAM-VI 适体选择性地结合辅助因子 SAM,并强烈区分 SAH。SAM-VI 的一致序列和结构模型与 SAM-III 核糖开关类别的一致模型具有一些共同特征,后者的成员主要存在于乳酸菌中。然而,这两个类别之间存在足够的差异,以至于当前的生物信息学方法分别对这两个基序的代表进行聚类。这些发现突出了能够选择性识别 SAM 的 RNA 结构的丰富性,并展示了 RNA 利用多种策略来执行类似生物学功能的能力。