Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, USA.
Biophys J. 2009 Dec 16;97(12):3095-104. doi: 10.1016/j.bpj.2009.08.059.
Filamins are actin binding proteins that contribute to cytoskeletal integrity and biochemical scaffolds during mechanochemical signal transductions. Structurally, human filamins are dimers composed of an actin-binding domain with 24 immunoglobulin (Ig)-like repeats. In this study, we focus on the recently solved high-resolution crystal structure of Ig-like repeats 19-21 of filamin-A (IgFLNa-R19-R21). IgFLNa-R19-21 is of marked importance because it contains the binding site for integrins and facilitates the dynamic ability of filamin-A to communicate with the extracellular environment. However, the structure of filamin-A shows an interesting domain arrangement where the integrin binding site on IgFLNa-R21 is hindered sterically by IgFLNa-R20. Thus, a number of hypotheses on the regulation of filamin-A exist. Using molecular dynamics simulations we evaluated the effects of two primary regulators of filamin-A, force and phosphorylation. We find that a tensile force of 40 pN is sufficient to initiate the partial removal of the autoinhibition on the integrin binding site of IgFLNa-R21. Force coupled to phosphorylation at Ser(2152), however, affords complete dissociation of autoinhibition with a decreased force requirement. Phosphorylation seems to decrease the threshold for removing the IgFLNa-R20 beta-strand inhibitor within 300 ps with 40 pN tensile force. Furthermore, the molecular dynamic trajectories illustrate phosphorylation of Ser(2152) without force is insufficient to remove autoinhibition. We believe the results of this study implicate filamin-A as a tunable mechanosensor, where its sensitivity can be modulated by the degree of phosphorylation.
细丝蛋白是肌动蛋白结合蛋白,在机械化学信号转导过程中有助于细胞骨架的完整性和生化支架。结构上,人细丝蛋白是由肌动蛋白结合域和 24 个免疫球蛋白(Ig)样重复组成的二聚体。在这项研究中,我们专注于最近解决的细丝蛋白-A(IgFLNa-R19-R21)的 Ig 样重复 19-21 的高分辨率晶体结构。IgFLNa-R19-21 非常重要,因为它包含整合素的结合位点,并促进细丝蛋白-A 与细胞外环境进行动态交流的能力。然而,细丝蛋白-A 的结构显示出有趣的结构排列,其中 IgFLNa-R21 上的整合素结合位点在空间上受到 IgFLNa-R20 的阻碍。因此,存在许多关于细丝蛋白-A 调节的假设。使用分子动力学模拟,我们评估了两种主要的细丝蛋白-A 调节剂,力和磷酸化的影响。我们发现,40 pN 的张力足以启动 IgFLNa-R21 上的整合素结合位点的部分自动抑制的去除。然而,与丝氨酸(Ser2152)的磷酸化相结合的力导致完全解离自动抑制,所需的力减小。磷酸化似乎在 40 pN 的张力下在 300 ps 内降低了去除 IgFLNa-R20 β-链抑制剂的阈值。此外,分子动力学轨迹表明,没有力的 Ser2152 磷酸化不足以去除自动抑制。我们相信这项研究的结果表明细丝蛋白-A 是一种可调谐的机械传感器,其敏感性可以通过磷酸化程度来调节。