Linke Wolfgang A, Grützner Anika
Physiology and Biophysics Unit, University of Muenster, Schlossplatz 5, 48149 Muenster, Germany.
Pflugers Arch. 2008 Apr;456(1):101-15. doi: 10.1007/s00424-007-0389-x. Epub 2007 Dec 6.
Perturbation of a protein away from its native state by mechanical stress is a physiological process immanent to many cells. The mechanical stability and conformational diversity of proteins under force therefore are important parameters in nature. Molecular-level investigations of "mechanical proteins" have enjoyed major breakthroughs over the last decade, a development to which atomic force microscopy (AFM) force spectroscopy has been instrumental. The giant muscle protein titin continues to be a paradigm model in this field. In this paper, we review how single-molecule mechanical measurements of titin using AFM have served to elucidate key aspects of protein unfolding-refolding and mechanisms by which biomolecular elasticity is attained. We outline recent work combining protein engineering and AFM force spectroscopy to establish the mechanical behavior of titin domains using molecular "fingerprinting." Furthermore, we summarize AFM force-extension data demonstrating different mechanical stabilities of distinct molecular-spring elements in titin, compare AFM force-extension to novel force-ramp/force-clamp studies, and elaborate on exciting new results showing that AFM force clamp captures the unfolding and refolding trajectory of single mechanical proteins. Along the way, we discuss the physiological implications of the findings, not least with respect to muscle mechanics. These studies help us understand how proteins respond to forces in cells and how mechanosensing and mechanosignaling events may proceed in vivo.
机械应力使蛋白质偏离其天然状态是许多细胞固有的生理过程。因此,蛋白质在受力情况下的机械稳定性和构象多样性是自然界中的重要参数。在过去十年中,对“机械蛋白质”的分子水平研究取得了重大突破,原子力显微镜(AFM)力谱在这一发展过程中发挥了重要作用。巨大的肌肉蛋白肌联蛋白仍然是该领域的范例模型。在本文中,我们回顾了如何使用AFM对肌联蛋白进行单分子力学测量,以阐明蛋白质展开-重折叠的关键方面以及获得生物分子弹性的机制。我们概述了最近将蛋白质工程与AFM力谱相结合的工作,以通过分子“指纹识别”确定肌联蛋白结构域的力学行为。此外,我们总结了AFM力-伸长数据,这些数据表明肌联蛋白中不同分子弹簧元件具有不同的机械稳定性,将AFM力-伸长与新的力斜坡/力钳研究进行了比较,并详细阐述了令人兴奋的新结果,即AFM力钳捕获了单个机械蛋白质的展开和重折叠轨迹。在此过程中,我们讨论了这些发现的生理意义,尤其是与肌肉力学相关的意义。这些研究有助于我们了解蛋白质如何在细胞中响应力,以及机械传感和机械信号事件在体内可能如何进行。