Service de Physiologie et d' Explorations Fonctionnelles, Hôpital Civil and Département de Physiologie, UPRES E.A. 3072, Faculté de Médecine, Strasbourg, France.
Am J Physiol Regul Integr Comp Physiol. 2010 Mar;298(3):R558-66. doi: 10.1152/ajpregu.00216.2009. Epub 2009 Dec 9.
This study investigates the role of central vs. peripheral factors in the limitation of maximal oxygen uptake (Vo(2max)) with moderate hypoxia [inspired fraction (Fi(O(2))) =14.5%]. Fifteen endurance-trained athletes performed maximal cycle incremental tests to assess Vo(2max), maximal cardiac output (Q(max)), and maximal arteriovenous oxygen (a-vO(2)) difference in normoxia and hypoxia. Muscle biopsies of vastus lateralis were taken 1 wk before the cycling tests to evaluate maximal muscle oxidative capacity (V(max)) and sensitivity of mitochondrial respiration to ADP (K(m)) on permeabilized muscle fibers in situ. Those athletes exhibiting the largest reduction of Vo(2max) in moderate hypoxia (Severe Loss group: -18 +/- 2%) suffered from significant reductions in Q(max) (-4 +/- 1%) and maximal a-vO(2) difference (-14 +/- 2%). Athletes who well tolerated hypoxia, as attested by a significantly smaller drop of Vo(2max) with hypoxia (Moderate Loss group: -7 +/- 1%), also display a blunted Q(max) (-9 +/- 2%) but, conversely, were able to maintain maximal a-vO(2) difference (+1 +/- 2%). Though V(max) was similar in the two experimental groups, the smallest reduction of Vo(2max) with moderate hypoxia was observed in those athletes presenting the lowest apparent K(m) for ADP in the presence of creatine (K(m+Cr)). In already-trained athletes with high muscular oxidative capacities, the qualitative, rather than quantitative, aspects of the mitochondrial function may constitute a limiting factor to aerobic ATP turnover when exercising at low Fi(O(2)), presumably through the functional coupling between the mitochondrial creatine kinase and ATP production. This study suggests a potential role for peripheral factors, including the alteration of cellular homeostasis in active muscles, in determining the tolerance to hypoxia in maximally exercising endurance-trained athletes.
这项研究探讨了在中度低氧环境下(吸入氧分数为 14.5%),中央因素和外周因素对最大摄氧量(Vo(2max))限制的作用。15 名耐力训练运动员进行了最大循环递增测试,以评估在常氧和低氧环境下的 Vo(2max)、最大心输出量(Q(max))和最大动静脉氧差(a-vO(2))。在进行自行车测试前的 1 周,从股外侧肌中取出肌肉活检样本,以评估最大肌肉氧化能力(V(max))和线粒体呼吸对 ADP 的敏感性(K(m))在原位的通透性肌肉纤维。那些在中度低氧环境下 Vo(2max)下降最大的运动员(严重损失组:-18 +/- 2%),其 Q(max)(-4 +/- 1%)和最大 a-vO(2)差异(-14 +/- 2%)显著降低。那些对低氧耐受良好的运动员,如 Vo(2max)下降幅度明显较小(中度损失组:-7 +/- 1%),其 Q(max)(-9 +/- 2%)也会减弱,但相反,他们能够维持最大 a-vO(2)差异(+1 +/- 2%)。尽管两个实验组的 V(max)相似,但在那些在存在肌酸的情况下对 ADP 的表观 K(m)最低的运动员中,观察到中度低氧时 Vo(2max)的降低幅度最小(K(m+Cr))。在具有高肌肉氧化能力的已训练运动员中,线粒体功能的定性方面,而不是定量方面,可能是在低 Fi(O(2))下运动时有氧 ATP 周转的限制因素,这可能是通过线粒体肌酸激酶和 ATP 产生之间的功能偶联。这项研究表明,在最大运动的耐力训练运动员中,外周因素(包括活动肌肉中细胞内稳态的改变)可能在决定对低氧的耐受中起作用。