Suppr超能文献

在 Eph 受体表达细胞的分离群体中进行细胞特异性信息处理。

Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells.

机构信息

Samuel Lunenfeld Research Institute (SLRI), Mount Sinai Hospital, Toronto M5G 1X5, Canada.

出版信息

Science. 2009 Dec 11;326(5959):1502-9. doi: 10.1126/science.1176615.

Abstract

Cells have self-organizing properties that control their behavior in complex tissues. Contact between cells expressing either B-type Eph receptors or their transmembrane ephrin ligands initiates bidirectional signals that regulate cell positioning. However, simultaneously investigating how information is processed in two interacting cell types remains a challenge. We implemented a proteomic strategy to systematically determine cell-specific signaling networks underlying EphB2- and ephrin-B1-controlled cell sorting. Quantitative mass spectrometric analysis of mixed populations of EphB2- and ephrin-B1-expressing cells that were labeled with different isotopes revealed cell-specific tyrosine phosphorylation events. Functional associations between these phosphotyrosine signaling networks and cell sorting were established with small interfering RNA screening. Data-driven network modeling revealed that signaling between mixed EphB2- and ephrin-B1-expressing cells is asymmetric and that the distinct cell types use different tyrosine kinases and targets to process signals induced by cell-cell contact. We provide systems- and cell-specific network models of contact-initiated signaling between two distinct cell types.

摘要

细胞具有自我组织特性,可控制其在复杂组织中的行为。表达 B 型 Eph 受体或其跨膜 ephrin 配体的细胞之间的接触会启动双向信号,从而调节细胞定位。然而,同时研究两种相互作用的细胞类型中的信息是如何处理的仍然是一个挑战。我们实施了一种蛋白质组学策略,以系统地确定 EphB2 和 ephrin-B1 控制的细胞分选所基于的细胞特异性信号网络。用不同同位素标记表达 EphB2 和 ephrin-B1 的混合细胞群的定量质谱分析揭示了细胞特异性酪氨酸磷酸化事件。用小干扰 RNA 筛选建立了这些磷酸酪氨酸信号网络与细胞分选之间的功能关联。数据驱动的网络建模表明,混合 EphB2 和 ephrin-B1 表达细胞之间的信号传递是不对称的,并且不同的细胞类型使用不同的酪氨酸激酶和靶标来处理细胞-细胞接触诱导的信号。我们提供了两种不同细胞类型之间接触引发的信号传递的系统和细胞特异性网络模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验