Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02472, USA.
Drug Metab Dispos. 2010 Mar;38(3):361-7. doi: 10.1124/dmd.109.030650. Epub 2009 Dec 11.
1-[4-Aminomethyl-4-(3-chlorophenyl)-cyclohexyl]-tetrahydro-pyrimidin- 2-one, 1, was developed as an inhibitor of dipeptidyl peptidase-4 enzyme. Biotransformation studies with 1 revealed the presence of an N-carbamoyl glucuronide metabolite (M1) in rat bile and urine. N-Carbamoyl glucuronides are rarely observed, and little is understood regarding the mechanism of N-carbamoyl glucuronidation. The objectives of the current investigation were to elucidate the structure of the novel N-carbamoyl glucuronide, to investigate the mechanism of N-carbamoyl glucuronide formation in vitro using stable labeled CO(2), UDP glucuronosyltransferase (UGT) reaction phenotyping, and to assess whether M1 was formed to the same extent in vitro across species-mouse, rat, hamster, dog, monkey, and human. Structure elucidation was performed on a mass spectrometer with accurate mass measurement and MS(n) capabilities. (13)C-labeled carbon dioxide was used for identification of the mechanism of N-carbamoyl glucuronidation. Mechanistic studies with (13)C-labeled CO(2) in rat liver microsomes revealed that CO(2) from the bicarbonate buffer (in equilibrium with exogenous CO(2)) may be responsible for the formation of M1. M1 was formed in vitro in liver microsomes from multiple species, mainly rat and hamster, followed by similar formation in dog, monkey, mouse, and human. M1 could be detected in UGT1A1, UGT1A3, and UGT2B7 Supersomes in a CO(2)-rich environment. In conclusion, our study demonstrates that formation of M1 was observed in microsomal incubations across various species and strongly suggests incorporation of CO(2) from the bicarbonate buffer, in equilibrium with exogenous CO(2), into the carbamoyl moiety of the formed N-carbamoyl glucuronide.
1-[4-氨甲基-4-(3-氯苯基)-环己基]-四氢嘧啶-2-酮,1,被开发为二肽基肽酶-4 酶抑制剂。1 的生物转化研究表明,在大鼠胆汁和尿液中存在 N-氨甲酰基葡萄糖醛酸苷代谢物(M1)。N-氨甲酰基葡萄糖醛酸苷很少被观察到,对于 N-氨甲酰基葡萄糖醛酸化的机制知之甚少。本研究的目的是阐明新型 N-氨甲酰基葡萄糖醛酸苷的结构,使用稳定标记的 CO2、UDP 葡萄糖醛酸基转移酶(UGT)反应表型进行体外 N-氨甲酰基葡萄糖醛酸形成的机制研究,并评估 M1 是否在体外在不同物种-小鼠、大鼠、仓鼠、狗、猴子和人中以相同程度形成。结构阐明在具有精确质量测量和 MS(n) 能力的质谱仪上进行。(13)C 标记的二氧化碳用于鉴定 N-氨甲酰基葡萄糖醛酸化的机制。用(13)C 标记的 CO2 在大鼠肝微粒体中的研究表明,碳酸氢盐缓冲液中的 CO2(与外源性 CO2 平衡)可能负责 M1 的形成。M1 在来自多个物种的肝微粒体中体外形成,主要是大鼠和仓鼠,其次是狗、猴子、小鼠和人。在富含 CO2 的环境中,可以在 UGT1A1、UGT1A3 和 UGT2B7 Supersomes 中检测到 M1。总之,我们的研究表明,M1 的形成在各种物种的微粒体孵育中都有观察到,并强烈表明形成的 N-氨甲酰基葡萄糖醛酸苷的氨甲酰部分中掺入了与外源性 CO2 平衡的碳酸氢盐缓冲液中的 CO2。