Suppr超能文献

拉帕替尼的解毒与生物活化途径的体外研究:UGT1A1 催化去苯甲酰化拉帕替尼的肝葡萄糖醛酸化。

Detoxication versus Bioactivation Pathways of Lapatinib In Vitro: UGT1A1 Catalyzes the Hepatic Glucuronidation of Debenzylated Lapatinib.

机构信息

Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (D.T.N.-W., K.D.J.) and Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., A.A.A.).

Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (D.T.N.-W., K.D.J.) and Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., A.A.A.)

出版信息

Drug Metab Dispos. 2021 Mar;49(3):233-244. doi: 10.1124/dmd.120.000236. Epub 2020 Dec 29.

Abstract

-Dealkylation of the tyrosine kinase inhibitor lapatinib by cytochrome P450 3A enzymes is implicated in the development of lapatinib-induced hepatotoxicity. Conjugative metabolism of debenzylated lapatinib (M1) via glucuronidation and sulfation is thought to be a major detoxication pathway for lapatinib in preclinical species (rat and dog), limiting formation of the quinoneimine reactive metabolite. Glucuronidation of M1 by human recombinant UDP-glucuronosyltransferases (UGTs) has been reported in vitro; however, the relative UGT enzyme contributions are unknown, and the interspecies differences in the conjugation versus bioactivation pathways of M1 have not been fully elucidated. In the present study, reaction phenotyping experiments using human recombinant UGT enzymes and enzyme-selective chemical inhibitors demonstrated that UGT1A1 was the major hepatic UGT enzyme involved in lapatinib M1 glucuronidation. Formation of the M1-glucuronide by human liver microsomes from -genotyped donors was significantly correlated with UGT1A1 activity as measured by 17-estradiol 3-glucuronidation ( = 0.90). Interspecies differences were found in the biotransformation of M1 in human, rat, and dog liver microsomal and 9000 supernatant (S9) fractions via glucuronidation, sulfation, aldehyde oxidase-mediated oxidation, and bioactivation to the quinoneimine trapped as a glutathione (GSH) conjugate. Moreover, we demonstrated the sequential metabolism of lapatinib in primary human hepatocytes to the M1-glucuronide, M1-sulfate, and quinoneimine-GSH conjugate. M1 glucuronidation was highly correlated with the rates of M1 formation, suggesting that -dealkylation may be the rate-limiting step in lapatinib biotransformation. Interindividual variability in the formation and clearance pathways of lapatinib M1 likely influences the hepatic exposure to reactive metabolites and may affect the risk for hepatotoxicity. SIGNIFICANCE STATEMENT: We used an integrated approach to examine the interindividual and interspecies differences in detoxication versus bioactivation pathways of lapatinib, which is associated with idiosyncratic hepatotoxicity. In addition to cytochrome P450 (P450)-mediated bioactivation, we report that multiple non-P450 pathways are involved in the biotransformation of the primary phenolic metabolite of lapatinib in vitro, including glucuronidation, sulfation, and aldehyde oxidase mediated oxidation. UGT1A1 was identified as the major hepatic enzyme involved in debenzylated lapatinib glucuronidation, which may limit hepatic exposure to the potentially toxic quinoneimine.

摘要

细胞色素 P450 3A 酶对酪氨酸激酶抑制剂拉帕替尼的脱烷基化作用与拉帕替尼诱导的肝毒性的发展有关。脱苄基拉帕替尼(M1)通过葡萄糖醛酸化和硫酸化的结合代谢被认为是临床前物种(大鼠和狗)中拉帕替尼的主要解毒途径,限制了醌亚胺反应性代谢物的形成。已经在体外报道了人重组 UDP-葡糖醛酸基转移酶(UGTs)对 M1 的葡萄糖醛酸化;然而,相对 UGT 酶的贡献尚不清楚,并且 M1 的结合与生物活化途径在种间差异尚未完全阐明。在本研究中,使用人重组 UGT 酶和酶选择性化学抑制剂的反应表型实验表明,UGT1A1 是参与拉帕替尼 M1 葡萄糖醛酸化的主要肝 UGT 酶。-基因分型供体的人肝微粒体形成 M1-葡萄糖苷酸的能力与 17-雌二醇 3-葡萄糖醛酸苷化( = 0.90)所测量的 UGT1A1 活性显著相关。在人、大鼠和狗肝微粒体和 9000 上清液(S9)级分中,通过葡萄糖醛酸化、硫酸化、醛氧化酶介导的氧化和生物活化形成 M1 的生物转化存在种间差异,以形成作为谷胱甘肽(GSH)缀合物捕获的醌亚胺。此外,我们证明了 lapatinib 在原代人肝细胞中的顺序代谢为 M1-葡萄糖苷酸、M1-硫酸盐和醌亚胺-GSH 缀合物。M1 葡萄糖醛酸化与 M1 形成率高度相关,表明 -脱烷基化可能是 lapatinib 生物转化的限速步骤。lapatinib M1 的形成和清除途径的个体间变异性可能会影响对反应性代谢物的肝暴露,并可能影响肝毒性的风险。意义陈述:我们使用综合方法研究了 lapatinib 的解毒与生物活化途径中的个体间和种间差异,lapatinib 与特发性肝毒性有关。除了细胞色素 P450(P450)介导的生物活化外,我们还报告了多种非 P450 途径参与 lapatinib 的主要酚代谢物的体外生物转化,包括葡萄糖醛酸化、硫酸化和醛氧化酶介导的氧化。UGT1A1 被鉴定为参与脱苄基拉帕替尼葡萄糖醛酸化的主要肝酶,这可能会限制潜在毒性醌亚胺对肝脏的暴露。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验