Wang Yonglin, Li Aining, Wang Xiaoli, Zhang Xin, Zhao Wei, Dou Daolong, Zheng Xiaobo, Wang Yuanchao
Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
Eukaryot Cell. 2010 Feb;9(2):242-50. doi: 10.1128/EC.00265-09. Epub 2009 Dec 11.
G protein-coupled receptors (GPCRs) represent a large receptor family involved in a broad spectrum of cell signaling. To understand signaling mechanisms mediated by GPCRs in Phytophthora sojae, we identified and characterized the PsGPR11 gene, which encodes a putative seven-transmembrane GPCR. An expression analysis revealed that PsGPR11 was differentially expressed during asexual development. The highest expression level occurred in zoospores and was upregulated during early infection. PsGPR11-deficienct transformants were obtained by gene silencing strategies. Silenced transformants exhibited no differences in hyphal growth or morphology, sporangium production or size, or mating behavior. However, the release of zoospores from sporangia was severely impaired in the silenced transformants, and about 50% of the sporangia did not completely release their zoospores. Zoospore encystment and germination were also impaired, and zoospores of the transformants lost their pathogenicity to soybean. In addition, no interaction was observed between PsGPR11 and PsGPA1 with a conventional yeast two-hybrid assay, and the transcriptional levels of some genes which were identified as being negatively regulated by PsGPA1 were not clearly altered in PsGPR11-silenced mutants. These results suggest that PsGPR11-mediated signaling controls P. sojae zoospore development and virulence through the pathways independent of G protein.
G蛋白偶联受体(GPCRs)是一个庞大的受体家族,参与广泛的细胞信号传导。为了解大豆疫霉中GPCRs介导的信号传导机制,我们鉴定并表征了PsGPR11基因,该基因编码一种推定的七跨膜GPCR。表达分析表明,PsGPR11在无性发育过程中差异表达。最高表达水平出现在游动孢子中,并且在早期感染期间上调。通过基因沉默策略获得了PsGPR11缺陷型转化体。沉默的转化体在菌丝生长或形态、孢子囊产生或大小或交配行为方面没有差异。然而,沉默的转化体中孢子囊释放游动孢子的能力严重受损,约50%的孢子囊没有完全释放其游动孢子。游动孢子的包囊化和萌发也受到损害,并且转化体的游动孢子对大豆失去了致病性。此外,用传统的酵母双杂交试验未观察到PsGPR11与PsGPA1之间的相互作用,并且在PsGPR11沉默突变体中,一些被确定为受PsGPA1负调控的基因的转录水平没有明显改变。这些结果表明,PsGPR11介导的信号传导通过独立于G蛋白的途径控制大豆疫霉游动孢子的发育和毒力。