Suppr超能文献

GPR11是一种假定的七跨膜G蛋白偶联受体,它控制大豆疫霉游动孢子的发育和毒力。

GPR11, a putative seven-transmembrane G protein-coupled receptor, controls zoospore development and virulence of Phytophthora sojae.

作者信息

Wang Yonglin, Li Aining, Wang Xiaoli, Zhang Xin, Zhao Wei, Dou Daolong, Zheng Xiaobo, Wang Yuanchao

机构信息

Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.

出版信息

Eukaryot Cell. 2010 Feb;9(2):242-50. doi: 10.1128/EC.00265-09. Epub 2009 Dec 11.

Abstract

G protein-coupled receptors (GPCRs) represent a large receptor family involved in a broad spectrum of cell signaling. To understand signaling mechanisms mediated by GPCRs in Phytophthora sojae, we identified and characterized the PsGPR11 gene, which encodes a putative seven-transmembrane GPCR. An expression analysis revealed that PsGPR11 was differentially expressed during asexual development. The highest expression level occurred in zoospores and was upregulated during early infection. PsGPR11-deficienct transformants were obtained by gene silencing strategies. Silenced transformants exhibited no differences in hyphal growth or morphology, sporangium production or size, or mating behavior. However, the release of zoospores from sporangia was severely impaired in the silenced transformants, and about 50% of the sporangia did not completely release their zoospores. Zoospore encystment and germination were also impaired, and zoospores of the transformants lost their pathogenicity to soybean. In addition, no interaction was observed between PsGPR11 and PsGPA1 with a conventional yeast two-hybrid assay, and the transcriptional levels of some genes which were identified as being negatively regulated by PsGPA1 were not clearly altered in PsGPR11-silenced mutants. These results suggest that PsGPR11-mediated signaling controls P. sojae zoospore development and virulence through the pathways independent of G protein.

摘要

G蛋白偶联受体(GPCRs)是一个庞大的受体家族,参与广泛的细胞信号传导。为了解大豆疫霉中GPCRs介导的信号传导机制,我们鉴定并表征了PsGPR11基因,该基因编码一种推定的七跨膜GPCR。表达分析表明,PsGPR11在无性发育过程中差异表达。最高表达水平出现在游动孢子中,并且在早期感染期间上调。通过基因沉默策略获得了PsGPR11缺陷型转化体。沉默的转化体在菌丝生长或形态、孢子囊产生或大小或交配行为方面没有差异。然而,沉默的转化体中孢子囊释放游动孢子的能力严重受损,约50%的孢子囊没有完全释放其游动孢子。游动孢子的包囊化和萌发也受到损害,并且转化体的游动孢子对大豆失去了致病性。此外,用传统的酵母双杂交试验未观察到PsGPR11与PsGPA1之间的相互作用,并且在PsGPR11沉默突变体中,一些被确定为受PsGPA1负调控的基因的转录水平没有明显改变。这些结果表明,PsGPR11介导的信号传导通过独立于G蛋白的途径控制大豆疫霉游动孢子的发育和毒力。

相似文献

2
A Phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones.
Eukaryot Cell. 2008 Dec;7(12):2133-40. doi: 10.1128/EC.00286-08. Epub 2008 Oct 17.
4
5
The PsCZF1 gene encoding a C2H2 zinc finger protein is required for growth, development and pathogenesis in Phytophthora sojae.
Microb Pathog. 2009 Aug;47(2):78-86. doi: 10.1016/j.micpath.2009.04.013. Epub 2009 May 15.
8
A Myb transcription factor of Phytophthora sojae, regulated by MAP kinase PsSAK1, is required for zoospore development.
PLoS One. 2012;7(6):e40246. doi: 10.1371/journal.pone.0040246. Epub 2012 Jun 29.
9
A putative DEAD-box RNA-helicase is required for normal zoospore development in the late blight pathogen Phytophthora infestans.
Fungal Genet Biol. 2008 Jun;45(6):954-62. doi: 10.1016/j.fgb.2008.03.004. Epub 2008 Mar 20.

引用本文的文献

1
-D-inositol Trisphosphate Signalling in Oomycetes.
Microorganisms. 2022 Oct 31;10(11):2157. doi: 10.3390/microorganisms10112157.
2
Signal and regulatory mechanisms involved in spore development of and .
Front Microbiol. 2022 Sep 9;13:984672. doi: 10.3389/fmicb.2022.984672. eCollection 2022.
3
Biotechnological approaches in management of oomycetes diseases.
3 Biotech. 2021 Jun;11(6):274. doi: 10.1007/s13205-021-02810-y. Epub 2021 May 18.
4
6
Phytophthora cinnamomi.
Mol Plant Pathol. 2018 Feb;19(2):260-285. doi: 10.1111/mpp.12568. Epub 2017 Aug 22.
8
Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies.
Mol Plant Pathol. 2012 Jun;13(5):519-29. doi: 10.1111/j.1364-3703.2011.00766.x. Epub 2011 Nov 24.
9
The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host.
Microbiology (Reading). 2012 Jan;158(Pt 1):107-118. doi: 10.1099/mic.0.052035-0. Epub 2011 Nov 10.

本文引用的文献

1
Phytophthora sojae: root rot pathogen of soybean and model oomycete.
Mol Plant Pathol. 2007 Jan;8(1):1-8. doi: 10.1111/j.1364-3703.2006.00373.x.
2
The PsCZF1 gene encoding a C2H2 zinc finger protein is required for growth, development and pathogenesis in Phytophthora sojae.
Microb Pathog. 2009 Aug;47(2):78-86. doi: 10.1016/j.micpath.2009.04.013. Epub 2009 May 15.
3
A Phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones.
Eukaryot Cell. 2008 Dec;7(12):2133-40. doi: 10.1128/EC.00286-08. Epub 2008 Oct 17.
4
Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi.
FEMS Microbiol Rev. 2008 Nov;32(6):1010-32. doi: 10.1111/j.1574-6976.2008.00131.x. Epub 2008 Sep 22.
5
The repertoire of G protein-coupled receptors in the sea squirt Ciona intestinalis.
BMC Evol Biol. 2008 May 1;8:129. doi: 10.1186/1471-2148-8-129.
6
Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b.
Plant Cell. 2008 Apr;20(4):1118-33. doi: 10.1105/tpc.107.057067. Epub 2008 Apr 4.
7
Toward improvements of oomycete transformation protocols.
J Eukaryot Microbiol. 2008 Mar-Apr;55(2):103-9. doi: 10.1111/j.1550-7408.2008.00304.x.
8
Heterotrimeric G protein activation by G-protein-coupled receptors.
Nat Rev Mol Cell Biol. 2008 Jan;9(1):60-71. doi: 10.1038/nrm2299.
9
The G protein-coupled receptor subset of the rat genome.
BMC Genomics. 2007 Sep 25;8:338. doi: 10.1186/1471-2164-8-338.
10
Oomycete genomics: new insights and future directions.
FEMS Microbiol Lett. 2007 Sep;274(1):1-8. doi: 10.1111/j.1574-6968.2007.00786.x. Epub 2007 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验