Paek Andrew L, Kaochar Salma, Jones Hope, Elezaby Aly, Shanks Lisa, Weinert Ted
Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA.
Genes Dev. 2009 Dec 15;23(24):2861-75. doi: 10.1101/gad.1862709.
Large-scale changes (gross chromosomal rearrangements [GCRs]) are common in genomes, and are often associated with pathological disorders. We report here that a specific pair of nearby inverted repeats in budding yeast fuse to form a dicentric chromosome intermediate, which then rearranges to form a translocation and other GCRs. We next show that fusion of nearby inverted repeats is general; we found that many nearby inverted repeats that are present in the yeast genome also fuse, as does a pair of synthetically constructed inverted repeats. Fusion occurs between inverted repeats that are separated by several kilobases of DNA and share >20 base pairs of homology. Finally, we show that fusion of inverted repeats, surprisingly, does not require genes involved in double-strand break (DSB) repair or genes involved in other repeat recombination events. We therefore propose that fusion may occur by a DSB-independent, DNA replication-based mechanism (which we term "faulty template switching"). Fusion of nearby inverted repeats to form dicentrics may be a major cause of instability in yeast and in other organisms.
大规模变化(染色体大片段重排[GCRs])在基因组中很常见,并且常常与病理性疾病相关。我们在此报告,芽殖酵母中一对特定的相邻反向重复序列融合形成双着丝粒染色体中间体,随后重排形成易位及其他GCRs。接下来我们表明,相邻反向重复序列的融合是普遍现象;我们发现酵母基因组中存在的许多相邻反向重复序列也会融合,一对人工构建的反向重复序列也是如此。融合发生在被几千个碱基对的DNA隔开且具有超过20个碱基对同源性的反向重复序列之间。最后,我们令人惊讶地表明,反向重复序列的融合不需要参与双链断裂(DSB)修复的基因或参与其他重复序列重组事件的基因。因此,我们提出融合可能通过一种不依赖DSB、基于DNA复制的机制发生(我们称之为“错误模板转换”)。相邻反向重复序列融合形成双着丝粒可能是酵母及其他生物体中不稳定性的主要原因。