Suppr超能文献

通过基于复制的机制使附近的反向重复序列融合,会导致双着丝粒染色体和无着丝粒染色体的形成,从而在芽殖酵母中引起基因组不稳定。

Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast.

作者信息

Paek Andrew L, Kaochar Salma, Jones Hope, Elezaby Aly, Shanks Lisa, Weinert Ted

机构信息

Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA.

出版信息

Genes Dev. 2009 Dec 15;23(24):2861-75. doi: 10.1101/gad.1862709.

Abstract

Large-scale changes (gross chromosomal rearrangements [GCRs]) are common in genomes, and are often associated with pathological disorders. We report here that a specific pair of nearby inverted repeats in budding yeast fuse to form a dicentric chromosome intermediate, which then rearranges to form a translocation and other GCRs. We next show that fusion of nearby inverted repeats is general; we found that many nearby inverted repeats that are present in the yeast genome also fuse, as does a pair of synthetically constructed inverted repeats. Fusion occurs between inverted repeats that are separated by several kilobases of DNA and share >20 base pairs of homology. Finally, we show that fusion of inverted repeats, surprisingly, does not require genes involved in double-strand break (DSB) repair or genes involved in other repeat recombination events. We therefore propose that fusion may occur by a DSB-independent, DNA replication-based mechanism (which we term "faulty template switching"). Fusion of nearby inverted repeats to form dicentrics may be a major cause of instability in yeast and in other organisms.

摘要

大规模变化(染色体大片段重排[GCRs])在基因组中很常见,并且常常与病理性疾病相关。我们在此报告,芽殖酵母中一对特定的相邻反向重复序列融合形成双着丝粒染色体中间体,随后重排形成易位及其他GCRs。接下来我们表明,相邻反向重复序列的融合是普遍现象;我们发现酵母基因组中存在的许多相邻反向重复序列也会融合,一对人工构建的反向重复序列也是如此。融合发生在被几千个碱基对的DNA隔开且具有超过20个碱基对同源性的反向重复序列之间。最后,我们令人惊讶地表明,反向重复序列的融合不需要参与双链断裂(DSB)修复的基因或参与其他重复序列重组事件的基因。因此,我们提出融合可能通过一种不依赖DSB、基于DNA复制的机制发生(我们称之为“错误模板转换”)。相邻反向重复序列融合形成双着丝粒可能是酵母及其他生物体中不稳定性的主要原因。

相似文献

3
Checkpoint genes and Exo1 regulate nearby inverted repeat fusions that form dicentric chromosomes in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21605-10. doi: 10.1073/pnas.1001938107. Epub 2010 Nov 23.
4
The role of replication bypass pathways in dicentric chromosome formation in budding yeast.
Genetics. 2010 Dec;186(4):1161-73. doi: 10.1534/genetics.110.122663. Epub 2010 Sep 13.
5
Leaping forks at inverted repeats.
Genes Dev. 2010 Jan 1;24(1):5-9. doi: 10.1101/gad.1884810.
6
Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements.
Mol Cell Biol. 2007 Apr;27(7):2601-14. doi: 10.1128/MCB.01740-06. Epub 2007 Jan 22.
7
Large inverted repeats in the vicinity of a single double-strand break strongly affect repair in yeast diploids lacking Rad51.
Mutat Res. 2008 Oct 14;645(1-2):9-18. doi: 10.1016/j.mrfmmm.2008.07.013. Epub 2008 Aug 5.
9
Two replication fork maintenance pathways fuse inverted repeats to rearrange chromosomes.
Nature. 2013 Sep 26;501(7468):569-72. doi: 10.1038/nature12500. Epub 2013 Sep 8.
10
Mre11-Sae2 and RPA Collaborate to Prevent Palindromic Gene Amplification.
Mol Cell. 2015 Nov 5;60(3):500-8. doi: 10.1016/j.molcel.2015.09.027.

引用本文的文献

1
SETD2 safeguards the genome against isochromosome formation.
Proc Natl Acad Sci U S A. 2023 Sep 26;120(39):e2303752120. doi: 10.1073/pnas.2303752120. Epub 2023 Sep 18.
3
Rad51-mediated replication of damaged templates relies on monoSUMOylated DDK kinase.
Nat Commun. 2022 May 5;13(1):2480. doi: 10.1038/s41467-022-30215-9.
4
Mechanism for inverted-repeat recombination induced by a replication fork barrier.
Nat Commun. 2022 Jan 10;13(1):32. doi: 10.1038/s41467-021-27443-w.
5
Smc5/6 functions with Sgs1-Top3-Rmi1 to complete chromosome replication at natural pause sites.
Nat Commun. 2021 Apr 8;12(1):2111. doi: 10.1038/s41467-021-22217-w.
6
Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping.
PLoS Genet. 2020 Apr 14;16(4):e1008733. doi: 10.1371/journal.pgen.1008733. eCollection 2020 Apr.
7
DNA damage tolerance in stem cells, ageing, mutagenesis, disease and cancer therapy.
Nucleic Acids Res. 2019 Aug 22;47(14):7163-7181. doi: 10.1093/nar/gkz531.
8
Single-strand annealing between inverted DNA repeats: Pathway choice, participating proteins, and genome destabilizing consequences.
PLoS Genet. 2018 Aug 9;14(8):e1007543. doi: 10.1371/journal.pgen.1007543. eCollection 2018 Aug.
10
The Prevalence and Evolutionary Conservation of Inverted Repeats in Proteobacteria.
Genome Biol Evol. 2018 Mar 1;10(3):918-927. doi: 10.1093/gbe/evy044.

本文引用的文献

3
Specific pathways prevent duplication-mediated genome rearrangements.
Nature. 2009 Aug 20;460(7258):984-9. doi: 10.1038/nature08217. Epub 2009 Jul 29.
5
Mechanisms of change in gene copy number.
Nat Rev Genet. 2009 Aug;10(8):551-64. doi: 10.1038/nrg2593.
6
The checkpoint response to replication stress.
DNA Repair (Amst). 2009 Sep 2;8(9):1038-46. doi: 10.1016/j.dnarep.2009.04.014. Epub 2009 May 23.
7
Replication fork reversal and the maintenance of genome stability.
Nucleic Acids Res. 2009 Jun;37(11):3475-92. doi: 10.1093/nar/gkp244. Epub 2009 Apr 30.
9
A microhomology-mediated break-induced replication model for the origin of human copy number variation.
PLoS Genet. 2009 Jan;5(1):e1000327. doi: 10.1371/journal.pgen.1000327. Epub 2009 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验