Suppr超能文献

反向DNA重复序列将远距离双链断裂的修复导向染色单体融合和染色体重排。

Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements.

作者信息

VanHulle Kelly, Lemoine Francene J, Narayanan Vidhya, Downing Brandon, Hull Krista, McCullough Christy, Bellinger Melissa, Lobachev Kirill, Petes Thomas D, Malkova Anna

机构信息

Biology Department, Indiana University/Purdue University Indiana, 723 West Michigan Street, Indianapolis, IN 46202-5132, USA.

出版信息

Mol Cell Biol. 2007 Apr;27(7):2601-14. doi: 10.1128/MCB.01740-06. Epub 2007 Jan 22.

Abstract

Inverted DNA repeats are known to cause genomic instabilities. Here we demonstrate that double-strand DNA breaks (DSBs) introduced a large distance from inverted repeats in the yeast (Saccharomyces cerevisiae) chromosome lead to a burst of genomic instability. Inverted repeats located as far as 21 kb from each other caused chromosome rearrangements in response to a single DSB. We demonstrate that the DSB initiates a pairing interaction between inverted repeats, resulting in the formation of large dicentric inverted dimers. Furthermore, we observed that propagation of cells containing inverted dimers led to gross chromosomal rearrangements, including translocations, truncations, and amplifications. Finally, our data suggest that break-induced replication is responsible for the formation of translocations resulting from anaphase breakage of inverted dimers. We propose a model explaining the formation of inverted dicentric dimers by intermolecular single-strand annealing (SSA) between inverted DNA repeats. According to this model, anaphase breakage of inverted dicentric dimers leads to gross chromosomal rearrangements (GCR). This "SSA-GCR" pathway is likely to be important in the repair of isochromatid breaks resulting from collapsed replication forks, certain types of radiation, or telomere aberrations that mimic isochromatid breaks.

摘要

已知反向DNA重复序列会导致基因组不稳定。在此我们证明,在酵母(酿酒酵母)染色体中距反向重复序列很远的位置引入的双链DNA断裂(DSB)会引发一阵基因组不稳定。相距达21 kb的反向重复序列会因单个DSB而导致染色体重排。我们证明DSB引发了反向重复序列之间的配对相互作用,导致形成大型双着丝粒反向二聚体。此外,我们观察到含有反向二聚体的细胞的增殖会导致大规模染色体重排,包括易位、截短和扩增。最后,我们的数据表明断裂诱导复制是由反向二聚体后期断裂导致的易位形成的原因。我们提出了一个模型,解释通过反向DNA重复序列之间的分子间单链退火(SSA)形成反向双着丝粒二聚体的过程。根据这个模型,反向双着丝粒二聚体的后期断裂会导致大规模染色体重排(GCR)。这种“SSA-GCR”途径可能在修复由复制叉塌陷、某些类型的辐射或模拟等臂染色单体断裂的端粒畸变导致的等臂染色单体断裂中起重要作用。

相似文献

1
Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements.
Mol Cell Biol. 2007 Apr;27(7):2601-14. doi: 10.1128/MCB.01740-06. Epub 2007 Jan 22.
2
Large inverted repeats in the vicinity of a single double-strand break strongly affect repair in yeast diploids lacking Rad51.
Mutat Res. 2008 Oct 14;645(1-2):9-18. doi: 10.1016/j.mrfmmm.2008.07.013. Epub 2008 Aug 5.
4
Single-strand annealing between inverted DNA repeats: Pathway choice, participating proteins, and genome destabilizing consequences.
PLoS Genet. 2018 Aug 9;14(8):e1007543. doi: 10.1371/journal.pgen.1007543. eCollection 2018 Aug.
5
Fragile DNA motifs trigger mutagenesis at distant chromosomal loci in saccharomyces cerevisiae.
PLoS Genet. 2013 Jun;9(6):e1003551. doi: 10.1371/journal.pgen.1003551. Epub 2013 Jun 13.
9
Mre11-Sae2 and RPA Collaborate to Prevent Palindromic Gene Amplification.
Mol Cell. 2015 Nov 5;60(3):500-8. doi: 10.1016/j.molcel.2015.09.027.

引用本文的文献

1
Assessment and Mitigation of CRISPR-Cas9-Induced Nontargeted Translocations.
Adv Sci (Weinh). 2025 Jun;12(21):e2414415. doi: 10.1002/advs.202414415. Epub 2025 Apr 11.
2
RPA and Rad27 limit templated and inverted insertions at DNA breaks.
Nucleic Acids Res. 2025 Jan 7;53(1). doi: 10.1093/nar/gkae1159.
6
Break-induced replication: unraveling each step.
Trends Genet. 2022 Jul;38(7):752-765. doi: 10.1016/j.tig.2022.03.011. Epub 2022 Apr 19.
7
Break-induced replication mechanisms in yeast and mammals.
Curr Opin Genet Dev. 2021 Dec;71:163-170. doi: 10.1016/j.gde.2021.08.002. Epub 2021 Sep 1.
8
DNA replication: the recombination connection.
Trends Cell Biol. 2022 Jan;32(1):45-57. doi: 10.1016/j.tcb.2021.07.005. Epub 2021 Aug 9.
9
Repair of DNA Breaks by Break-Induced Replication.
Annu Rev Biochem. 2021 Jun 20;90:165-191. doi: 10.1146/annurev-biochem-081420-095551. Epub 2021 Apr 1.
10
Single-Strand Annealing in Cancer.
Int J Mol Sci. 2021 Feb 22;22(4):2167. doi: 10.3390/ijms22042167.

本文引用的文献

1
The Stability of Broken Ends of Chromosomes in Zea Mays.
Genetics. 1941 Mar;26(2):234-82. doi: 10.1093/genetics/26.2.234.
4
Telomere dysfunction drives chromosomal instability in human mammary epithelial cells.
Genes Chromosomes Cancer. 2005 Dec;44(4):339-50. doi: 10.1002/gcc.20244.
5
A mechanism of palindromic gene amplification in Saccharomyces cerevisiae.
Genes Dev. 2005 Jun 1;19(11):1390-9. doi: 10.1101/gad.1315805.
6
The loss of a single telomere can result in instability of multiple chromosomes in a human tumor cell line.
Mol Cancer Res. 2005 Mar;3(3):139-50. doi: 10.1158/1541-7786.MCR-04-0194.
8
Telomere dysfunction in aging and cancer.
Int J Biochem Cell Biol. 2005 May;37(5):1000-13. doi: 10.1016/j.biocel.2004.09.003.
10
A method for calling gains and losses in array CGH data.
Biostatistics. 2005 Jan;6(1):45-58. doi: 10.1093/biostatistics/kxh017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验