Suppr超能文献

磷脂酰肌醇 3-激酶(pI3K)p110alpha 热点突变:与调节亚基 p85 和 RAS 的差异相互作用。

Hot-spot mutations in p110alpha of phosphatidylinositol 3-kinase (pI3K): differential interactions with the regulatory subunit p85 and with RAS.

机构信息

Department of Molecular and Experimental Medicine, The Scripps Research Institute; La Jolla, CA. USA.

出版信息

Cell Cycle. 2010 Feb 1;9(3):596-600. doi: 10.4161/cc.9.3.10599.

Abstract

The phosphatidylinositol 3-kinase (pI3K) signaling pathway is frequently upregulated in cancer. PIK3CA, the gene coding for the catalytic subunit p110alpha of PI3K, is mutated in about 12% of all human cancers. Most of these mutants are single amino acid substitutions that map to three positions (hot spots) in the helical or kinase domains of the enzyme. The mutant proteins show gain of enzymatic function, constitutively activate AKT signaling and induce oncogenic transformation in vitro and in animal model systems. We have shown previously that hot-spot mutations in the helical domain and kinase domain of the avian p110alpha have different requirements for interaction with the regulatory subunit p85 and with RAS-GTP. Here, we have carried out a genetic and biochemical analysis of these "hot-spot" mutations in human p110alpha. The present studies add support to the proposal that helical and kinase domain mutations in p110alpha trigger a gain of function by different molecular mechanisms. The gain of function induced by helical domain mutations requires interaction with RAS-Gtp. In contrast, the kinase domain mutation is active in the absence of RAS-Gtp binding, but depends on the interaction with p85.

摘要

磷脂酰肌醇 3-激酶(pI3K)信号通路在癌症中经常被过度激活。PI3K 的编码催化亚基 p110α的基因 PIK3CA 在大约 12%的人类癌症中发生突变。这些突变体大多数是单个氨基酸取代,映射到酶的螺旋或激酶结构域中的三个位置(热点)。突变蛋白显示出酶功能的获得,AKT 信号持续激活,并在体外和动物模型系统中诱导致癌转化。我们之前已经表明,禽类 p110α 的螺旋结构域和激酶结构域中的热点突变对于与调节亚基 p85 和 RAS-GTP 的相互作用具有不同的要求。在这里,我们对人 p110α 的这些“热点”突变进行了遗传和生化分析。目前的研究为 p110α 的螺旋和激酶结构域突变通过不同的分子机制触发功能获得提供了支持。螺旋结构域突变诱导的功能获得需要与 RAS-GTP 相互作用。相比之下,激酶结构域突变在没有 RAS-GTP 结合的情况下是活跃的,但依赖于与 p85 的相互作用。

相似文献

2
Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms.
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2652-7. doi: 10.1073/pnas.0712169105. Epub 2008 Feb 11.
3
Gain of interaction with IRS1 by p110α-helical domain mutants is crucial for their oncogenic functions.
Cancer Cell. 2013 May 13;23(5):583-93. doi: 10.1016/j.ccr.2013.03.021. Epub 2013 May 2.
4
Cancer-derived mutations in the regulatory subunit p85alpha of phosphoinositide 3-kinase function through the catalytic subunit p110alpha.
Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15547-52. doi: 10.1073/pnas.1009652107. Epub 2010 Aug 16.
5
Human tumor mutants in the p110alpha subunit of PI3K.
Cell Cycle. 2006 Apr;5(7):675-7. doi: 10.4161/cc.5.7.2605. Epub 2006 Apr 1.
6
A biochemical mechanism for the oncogenic potential of the p110beta catalytic subunit of phosphoinositide 3-kinase.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19897-902. doi: 10.1073/pnas.1008739107. Epub 2010 Oct 28.
7
Insights into the oncogenic effects of PIK3CA mutations from the structure of p110alpha/p85alpha.
Cell Cycle. 2008 May 1;7(9):1151-6. doi: 10.4161/cc.7.9.5817. Epub 2008 Feb 27.
8
The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells.
Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18443-8. doi: 10.1073/pnas.0508988102. Epub 2005 Dec 8.
10
Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit.
Science. 2007 Jul 13;317(5835):239-42. doi: 10.1126/science.1135394.

引用本文的文献

1
Mutations: Are They a Relevant Target in Adult Diffuse Gliomas?
Int J Mol Sci. 2025 May 30;26(11):5276. doi: 10.3390/ijms26115276.
5
Functionalized Nanomaterials In Pancreatic Cancer Theranostics And Molecular Imaging.
ChemistryOpen. 2025 Jan;14(1):e202400232. doi: 10.1002/open.202400232. Epub 2024 Oct 21.
6
When, where and which PIK3CA mutations are pathogenic in congenital disorders.
Nat Cardiovasc Res. 2022 Aug;1(8):700-714. doi: 10.1038/s44161-022-00107-8. Epub 2022 Aug 8.
8
Kinases on Double Duty: A Review of UniProtKB Annotated Bifunctionality within the Kinome.
Biomolecules. 2022 May 11;12(5):685. doi: 10.3390/biom12050685.
9
Genetic Mutations of Pancreatic Cancer and Genetically Engineered Mouse Models.
Cancers (Basel). 2021 Dec 24;14(1):71. doi: 10.3390/cancers14010071.
10
Genetic regressive trajectories in colorectal cancer: A new hallmark of oligo-metastatic disease?
Transl Oncol. 2021 Aug;14(8):101131. doi: 10.1016/j.tranon.2021.101131. Epub 2021 May 23.

本文引用的文献

1
Structural effects of oncogenic PI3Kα mutations.
Curr Top Microbiol Immunol. 2010;347:43-53. doi: 10.1007/82_2010_53.
2
A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane.
Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16996-7001. doi: 10.1073/pnas.0908444106. Epub 2009 Sep 23.
3
Functional differences between two classes of oncogenic mutation in the PIK3CA gene.
Biochem Biophys Res Commun. 2009 Apr 17;381(4):577-81. doi: 10.1016/j.bbrc.2009.02.081. Epub 2009 Feb 20.
4
Class I PI3K in oncogenic cellular transformation.
Oncogene. 2008 Sep 18;27(41):5486-96. doi: 10.1038/onc.2008.244.
5
Insights into the oncogenic effects of PIK3CA mutations from the structure of p110alpha/p85alpha.
Cell Cycle. 2008 May 1;7(9):1151-6. doi: 10.4161/cc.7.9.5817. Epub 2008 Feb 27.
6
Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms.
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2652-7. doi: 10.1073/pnas.0712169105. Epub 2008 Feb 11.
8
Oncogenic signaling of class I PI3K isoforms.
Oncogene. 2008 Apr 17;27(18):2561-74. doi: 10.1038/sj.onc.1210918. Epub 2007 Nov 12.
10
Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit.
Science. 2007 Jul 13;317(5835):239-42. doi: 10.1126/science.1135394.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验