Suppr超能文献

Plasma glucagon, glucose, and free fatty acid concentrations and secretion during prolonged hypothermia in rats.

作者信息

Hoo-Paris R, Jourdan M L, Moreau-Hansany C, Wang L C

机构信息

Department of Zoology, University of Alberta, Edmonton, Canada.

出版信息

Am J Physiol. 1991 Mar;260(3 Pt 2):R480-5. doi: 10.1152/ajpregu.1991.260.3.R480.

Abstract

Impairment of metabolic substrate mobilization and utilization may be a factor limiting survival in hypothermia. Using a newly developed technique for maintaining stable low body temperature (Tb), substrate profiles and their regulation by glucagon were examined in hypothermic rats (Tb 19 +/- 0.3 degrees C) over 20 h. During cooling, plasma glucagon, glucose, and free fatty acid (FFA) concentrations increased significantly (536 +/- 55 pg/ml, 304 +/- 26 mg/100 ml, and 844 +/- 81 mueq/l, respectively). Plasma glucagon and glucose concentrations continued to increase up to 8 h (peaks 810 +/- 103 pg/ml and 451 +/- 33 mg/100 ml, respectively) and remained high throughout the rest of the hypothermic period. FFA concentrations decreased steadily during the hypothermic period. Exogenous glucagon (20 micrograms/kg) induced significant increases in plasma glucose (+129 +/- 31 mg/100 ml) and FFA concentrations (+351 mueq/l) at 2 h but had no effect at 15 h of hypothermia. In vitro evaluation of pancreatic alpha-cell function indicated that glucagon secretion is independent of temperature between 37 and 19 degrees C. Our data indicate that hypothermia is characterized by a disturbed substrate metabolism, which is likely due to an imbalance in pancreatic alpha- and beta-cell function and a time-dependent decrease in tissue sensitivity to glucagon. These deleterious changes may limit survival in hypothermia.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验