Center for Neuroscience, University of California Davis, Davis, California, USA.
PLoS Genet. 2009 Dec;5(12):e1000761. doi: 10.1371/journal.pgen.1000761. Epub 2009 Dec 11.
While most sensory neurons will adapt to prolonged stimulation by down-regulating their responsiveness to the signal, it is not clear which events initiate long-lasting sensory adaptation. Likewise, we are just beginning to understand how the physiology of the adapted cell is altered. Caenorhabditis elegans is inherently attracted to specific odors that are sensed by the paired AWC olfactory sensory neurons. The attraction diminishes if the animal experiences these odors for a prolonged period of time in the absence of food. The AWC neuron responds acutely to odor-exposure by closing calcium channels. While odortaxis requires a Galpha subunit protein, cGMP-gated channels, and guanylyl cyclases, adaptation to prolonged odor exposure requires nuclear entry of the cGMP-dependent protein kinase, EGL-4. We asked which candidate members of the olfactory signal transduction pathway promote nuclear entry of EGL-4 and which molecules might induce long-term adaptation downstream of EGL-4 nuclear entry. We found that initiation of long-term adaptation, as assessed by nuclear entry of EGL-4, is dependent on G-protein mediated signaling but is independent of fluxes in calcium levels. We show that long-term adaptation requires polyunsaturated fatty acids (PUFAs) that may act on the transient receptor potential (TRP) channel type V OSM-9 downstream of EGL-4 nuclear entry. We also present evidence that high diacylglycerol (DAG) levels block long-term adaptation without affecting EGL-4 nuclear entry. Our analysis provides a model for the process of long-term adaptation that occurs within the AWC neuron of C. elegans: G-protein signaling initiates long-lasting olfactory adaptation by promoting the nuclear entry of EGL-4, and once EGL-4 has entered the nucleus, processes such as PUFA activation of the TRP channel OSM-9 may dampen the output of the AWC neuron.
虽然大多数感觉神经元会通过下调其对信号的反应性来适应长时间的刺激,但目前尚不清楚哪些事件会引发持久的感觉适应。同样,我们才刚刚开始了解适应细胞的生理学是如何改变的。秀丽隐杆线虫天生会被特定的气味所吸引,这些气味是由配对的 AWC 嗅觉感觉神经元感知到的。如果动物在没有食物的情况下长时间接触这些气味,吸引力就会减弱。AWC 神经元对气味暴露的急性反应是通过关闭钙通道来实现的。虽然气味导向需要 G 蛋白亚基蛋白、cGMP 门控通道和鸟苷酸环化酶,但对长时间气味暴露的适应需要 cGMP 依赖性蛋白激酶 EGL-4 的核内进入。我们想知道嗅觉信号转导途径中的哪些候选成员促进 EGL-4 的核内进入,以及哪些分子可能在 EGL-4 核内进入的下游诱导长期适应。我们发现,如 EGL-4 的核内进入所评估的长期适应的启动依赖于 G 蛋白介导的信号转导,但与钙水平的通量无关。我们表明,长期适应需要多不饱和脂肪酸(PUFA),它们可能在 EGL-4 核内进入下游作用于瞬时受体电位(TRP)通道类型 V OSM-9。我们还提供了证据表明,高二酰基甘油(DAG)水平会阻止长期适应而不影响 EGL-4 的核内进入。我们的分析为发生在秀丽隐杆线虫 AWC 神经元中的长期适应过程提供了一个模型:G 蛋白信号通过促进 EGL-4 的核内进入来启动持久的嗅觉适应,一旦 EGL-4 进入细胞核,PUFA 激活 TRP 通道 OSM-9 等过程可能会抑制 AWC 神经元的输出。