Suppr超能文献

视觉的起源:一段探索之旅。

How vision begins: an odyssey.

作者信息

Luo Dong-Gen, Xue Tian, Yau King-Wai

机构信息

Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9855-62. doi: 10.1073/pnas.0708405105. Epub 2008 Jul 16.

Abstract

Retinal rods and cones, which are the front-end light detectors in the eye, achieve wonders together by being able to signal single-photon absorption and yet also able to adjust their function to brightness changes spanning 10(9)-fold. How these cells detect light is now quite well understood. Not surprising for almost any biological process, the intial step of seeing reveals a rich complexity as the probing goes deeper. The odyssey continues, but the knowledge gained so far is already nothing short of remarkable in qualitative and quantitative detail. It has also indirectly opened up the mystery of odorant sensing. Basic science aside, clinical ophthalmology has benefited tremendously from this endeavor as well. This article begins by recapitulating the key developments in this understanding from the mid-1960s to the late 1980s, during which period the advances were particularly rapid and fit for an intricate detective story. It then highlights some details discovered more recently, followed by a comparison between rods and cones.

摘要

视网膜视杆细胞和视锥细胞是眼睛前端的光探测器,它们共同创造了奇迹,既能发出单光子吸收信号,又能将其功能调整以适应跨越10⁹倍的亮度变化。目前,我们已经相当清楚这些细胞是如何检测光线的。对于几乎任何生物过程来说,随着研究的深入,视觉的初始步骤都展现出丰富的复杂性,这并不奇怪。探索仍在继续,但就定性和定量细节而言,迄今所获得的知识已经堪称卓越。它还间接地揭开了嗅觉传感的谜团。撇开基础科学不谈,临床眼科也从这项研究中受益匪浅。本文首先回顾了从20世纪60年代中期到80年代末在这一认识上的关键进展,在此期间进展尤为迅速,宛如一个错综复杂的侦探故事。接着突出了一些最近发现的细节,随后对视杆细胞和视锥细胞进行了比较。

相似文献

1
How vision begins: an odyssey.视觉的起源:一段探索之旅。
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9855-62. doi: 10.1073/pnas.0708405105. Epub 2008 Jul 16.
3
Vertebrate photoreceptors.脊椎动物光感受器
Prog Retin Eye Res. 2001 Jan;20(1):49-94. doi: 10.1016/s1350-9462(00)00014-8.
8
Retinal phototransduction.视网膜光转导
Neurosciences (Riyadh). 2014 Oct;19(4):275-80.
9
The molecules of visual excitation.
Sci Am. 1987 Jul;257(1):42-50. doi: 10.1038/scientificamerican0787-42.
10
The visual ecology of avian photoreceptors.鸟类光感受器的视觉生态学。
Prog Retin Eye Res. 2001 Sep;20(5):675-703. doi: 10.1016/s1350-9462(01)00009-x.

引用本文的文献

10
Circadian-independent light regulation of mammalian metabolism.昼夜节律非依赖性的哺乳动物代谢的光调控。
Nat Metab. 2024 Jun;6(6):1000-1007. doi: 10.1038/s42255-024-01051-6. Epub 2024 Jun 3.

本文引用的文献

2
ENERGY, QUANTA, AND VISION.能量、量子和视觉。
J Gen Physiol. 1942 Jul 20;25(6):819-40. doi: 10.1085/jgp.25.6.819.
3
Quantal noise from human red cone pigment.来自人类红色视锥色素的量子噪声。
Nat Neurosci. 2008 May;11(5):565-71. doi: 10.1038/nn.2110. Epub 2008 Apr 20.
9
Phototransduction in mouse rods and cones.小鼠视杆细胞和视锥细胞中的光转导。
Pflugers Arch. 2007 Aug;454(5):805-19. doi: 10.1007/s00424-006-0194-y. Epub 2007 Jan 17.
10
Crystal structure of a photoactivated deprotonated intermediate of rhodopsin.视紫红质光激活去质子化中间体的晶体结构。
Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16123-8. doi: 10.1073/pnas.0608022103. Epub 2006 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验