Suppr超能文献

同步辐射 X 射线可视化昆虫在致死性和非致死性冻结过程中的冰形成。

Synchrotron x-ray visualisation of ice formation in insects during lethal and non-lethal freezing.

机构信息

Department of Biology, The University of Western Ontario, London, Ontario, Canada. mailto:

出版信息

PLoS One. 2009 Dec 14;4(12):e8259. doi: 10.1371/journal.pone.0008259.

Abstract

Although the biochemical correlates of freeze tolerance in insects are becoming well-known, the process of ice formation in vivo is subject to speculation. We used synchrotron x-rays to directly visualise real-time ice formation at 3.3 Hz in intact insects. We observed freezing in diapausing 3(rd) instar larvae of Chymomyza amoena (Diptera: Drosophilidae), which survive freezing if it occurs above -14 degrees C, and non-diapausing 3(rd) instar larvae of C. amoena and Drosophila melanogaster (Diptera: Drosophilidae), neither of which survive freezing. Freezing was readily observed in all larvae, and on one occasion the gut was seen to freeze separately from the haemocoel. There were no apparent qualitative differences in ice formation between freeze tolerant and non-freeze tolerant larvae. The time to complete freezing was positively related to temperature of nucleation (supercooling point, SCP), and SCP declined with decreasing body size, although this relationship was less strong in diapausing C. amoena. Nucleation generally occurred at a contact point with the thermocouple or chamber wall in non-diapausing larvae, but at random in diapausing larvae, suggesting that the latter have some control over ice nucleation. There were no apparent differences between freeze tolerant and non-freeze tolerant larvae in tracheal displacement or distension of the body during freezing, although there was markedly more distension in D. melanogaster than in C. amoena regardless of diapause state. We conclude that although control of ice nucleation appears to be important in freeze tolerant individuals, the physical ice formation process itself does not differ among larvae that can and cannot survive freezing. This suggests that a focus on cellular and biochemical mechanisms is appropriate and may reveal the primary adaptations allowing freeze tolerance in insects.

摘要

虽然昆虫抗冻性的生化相关性已广为人知,但体内冰形成的过程仍存在推测。我们使用同步加速器 X 射线以 3.3Hz 的频率直接实时观察完整昆虫体内的冰形成。我们观察了休眠 3 龄幼虫 Chymomyza amoena(双翅目:果蝇科)的冻结过程,如果温度在-14°C 以上,它们可以在冻结中存活,而非休眠的 3 龄幼虫和果蝇 Drosophila melanogaster(双翅目:果蝇科)则不能在冻结中存活。所有幼虫都很容易被冻结,有一次还观察到肠道与血腔分开冻结。在抗冻和非抗冻幼虫之间,冰形成似乎没有明显的定性差异。完全冻结的时间与成核温度(过冷点,SCP)呈正相关,并且 SCP 随体型减小而降低,尽管休眠的 Chymomyza amoena 中这种关系较弱。在非休眠幼虫中,成核通常发生在与热电偶或腔室壁的接触点处,但在休眠幼虫中则随机发生,这表明后者可以控制冰核的形成。在抗冻和非抗冻幼虫中,冻结过程中气管位移或身体膨胀没有明显差异,尽管果蝇的膨胀明显大于 Chymomyza amoena,而与休眠状态无关。我们的结论是,尽管控制冰核形成似乎对抗冻个体很重要,但在可以和不能在冻结中存活的幼虫中,物理冰形成过程本身没有差异。这表明关注细胞和生化机制是合适的,并且可能揭示允许昆虫抗冻的主要适应机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4477/2788418/c3b03745d72a/pone.0008259.g001.jpg

相似文献

1
Synchrotron x-ray visualisation of ice formation in insects during lethal and non-lethal freezing.
PLoS One. 2009 Dec 14;4(12):e8259. doi: 10.1371/journal.pone.0008259.
2
Freezing induces a loss of freeze tolerance in an overwintering insect.
Proc Biol Sci. 2004 Jul 22;271(1547):1507-11. doi: 10.1098/rspb.2004.2760.
3
Thermal analysis of ice and glass transitions in insects that do and do not survive freezing.
J Exp Biol. 2018 Apr 6;221(Pt 7):jeb170464. doi: 10.1242/jeb.170464.
4
Supercooling and freezing as eco-physiological alternatives rather than mutually exclusive strategies: A case study in Pyrrhocoris apterus.
J Insect Physiol. 2018 Nov-Dec;111:53-62. doi: 10.1016/j.jinsphys.2018.10.006. Epub 2018 Oct 25.
5
Mechanisms underlying insect freeze tolerance.
Biol Rev Camb Philos Soc. 2018 Nov;93(4):1891-1914. doi: 10.1111/brv.12425. Epub 2018 May 10.
8
Laboratory acclimation to autumn-like conditions induces freeze tolerance in the spring field cricket Gryllus veletis (Orthoptera: Gryllidae).
J Insect Physiol. 2019 Feb-Mar;113:9-16. doi: 10.1016/j.jinsphys.2018.12.007. Epub 2018 Dec 21.
9
Insect Freeze-Tolerance Downunder: The Microbial Connection.
Insects. 2023 Jan 13;14(1):89. doi: 10.3390/insects14010089.
10
Insect mitochondria as targets of freezing-induced injury.
Proc Biol Sci. 2020 Jul 29;287(1931):20201273. doi: 10.1098/rspb.2020.1273. Epub 2020 Jul 22.

引用本文的文献

1
Biogeographic position and body size jointly set lower thermal limits of wandering spiders.
Ecol Evol. 2021 Mar 5;11(7):3347-3356. doi: 10.1002/ece3.7286. eCollection 2021 Apr.
2
Physiological responses to gravity in an insect.
Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):2180-2186. doi: 10.1073/pnas.1915424117. Epub 2020 Jan 13.
4
Threshold temperatures mediate the impact of reduced snow cover on overwintering freeze-tolerant caterpillars.
Naturwissenschaften. 2012 Jan;99(1):33-41. doi: 10.1007/s00114-011-0866-0. Epub 2011 Dec 3.
5
Freezing in sealed capillaries for preparation of frozen hydratedsections.
J Microsc. 2011 Dec;244(3):235-47. doi: 10.1111/j.1365-2818.2011.03575.x.

本文引用的文献

6
Short-term hardening effects on survival of acute and chronic cold exposure by Drosophila melanogaster larvae.
J Insect Physiol. 2008 Apr;54(4):708-18. doi: 10.1016/j.jinsphys.2008.01.011. Epub 2008 Feb 7.
7
Advances in biological structure, function, and physiology using synchrotron X-ray imaging*.
Annu Rev Physiol. 2008;70:119-42. doi: 10.1146/annurev.physiol.70.113006.100434.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验