Suppr超能文献

昆虫线粒体作为冷冻诱导损伤的靶点。

Insect mitochondria as targets of freezing-induced injury.

机构信息

Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branišovská 31, České Budějovice 37005, Czech Republic.

Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic.

出版信息

Proc Biol Sci. 2020 Jul 29;287(1931):20201273. doi: 10.1098/rspb.2020.1273. Epub 2020 Jul 22.

Abstract

Many insects survive internal freezing, but the great complexity of freezing stress hinders progress in understanding the ultimate nature of freezing-induced injury. Here, we use larvae of the drosophilid fly, to assess the role of mitochondrial responses to freezing stress. Respiration analysis revealed that fat body mitochondria of the freeze-sensitive (non-diapause) phenotype significantly decrease oxygen consumption upon lethal freezing stress, while mitochondria of the freeze-tolerant (diapausing, cold-acclimated) phenotype do not lose respiratory capacity upon the same stress. Using transmission electron microscopy, we show that fat body and hindgut mitochondria swell, and occasionally burst, upon exposure of the freeze-sensitive phenotype to lethal freezing stress. By contrast, mitochondrial swelling is not observed in the freeze-tolerant phenotype exposed to the same stress. We hypothesize that mitochondrial swelling results from permeability transition of the inner mitochondrial membrane and loss of its barrier function, which causes osmotic influx of cytosolic water into the matrix. We therefore suggest that the phenotypic transition to diapause and cold acclimation could be associated with adaptive changes that include the protection of the inner mitochondrial membrane against permeability transition and subsequent mitochondrial swelling. Accumulation of high concentrations of proline and other cryoprotective substances might be a part of such adaptive changes as we have shown that freezing-induced mitochondrial swelling was abolished by feeding the freeze-sensitive phenotype larvae on a proline-augmented diet.

摘要

许多昆虫能在体内结冰的情况下存活,但结冰应激的复杂性阻碍了人们对结冰引起的损伤的本质的理解。在这里,我们使用果蝇的幼虫来评估线粒体对结冰应激的反应的作用。呼吸分析表明,对结冰敏感(非滞育)表型的脂肪体线粒体在致命的结冰应激下显著降低耗氧量,而对结冰耐受(滞育、冷适应)表型的线粒体在相同的应激下不会失去呼吸能力。使用透射电子显微镜,我们发现脂肪体和后肠线粒体在对结冰敏感表型暴露于致命结冰应激下会膨胀,偶尔会破裂。相比之下,在相同的应激下,未观察到结冰耐受表型中线粒体的肿胀。我们假设线粒体肿胀是由线粒体内膜的通透性转变和其屏障功能的丧失引起的,这导致细胞质水分渗透到基质中。因此,我们认为表型向滞育和冷适应的转变可能与适应性变化有关,包括对内线粒体膜的保护,以防止通透性转变和随后的线粒体肿胀。脯氨酸和其他防冻物质的高浓度积累可能是这种适应性变化的一部分,因为我们已经表明,通过给对结冰敏感的幼虫喂食富含脯氨酸的饮食,可以消除结冰引起的线粒体肿胀。

相似文献

1
Insect mitochondria as targets of freezing-induced injury.昆虫线粒体作为冷冻诱导损伤的靶点。
Proc Biol Sci. 2020 Jul 29;287(1931):20201273. doi: 10.1098/rspb.2020.1273. Epub 2020 Jul 22.
9
Transcriptional analysis of insect extreme freeze tolerance.昆虫极端耐寒性的转录分析。
Proc Biol Sci. 2019 Oct 23;286(1913):20192019. doi: 10.1098/rspb.2019.2019.

本文引用的文献

1
Transcriptional analysis of insect extreme freeze tolerance.昆虫极端耐寒性的转录分析。
Proc Biol Sci. 2019 Oct 23;286(1913):20192019. doi: 10.1098/rspb.2019.2019.
4
Mechanisms underlying insect freeze tolerance.昆虫抗冻机制。
Biol Rev Camb Philos Soc. 2018 Nov;93(4):1891-1914. doi: 10.1111/brv.12425. Epub 2018 May 10.
8
Calcium and regulation of the mitochondrial permeability transition.钙与线粒体通透性转换的调节。
Cell Calcium. 2018 Mar;70:56-63. doi: 10.1016/j.ceca.2017.05.004. Epub 2017 May 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验