Bahmer Andreas, Langner Gerald
Clinic for Otolaryngology, Audiological Acoustics, University of Frankfurt Main, 60590, Frankfurt, Germany.
Biol Cybern. 2010 Jan;102(1):81-93. doi: 10.1007/s00422-009-0353-2. Epub 2009 Dec 10.
Chopper neurons in the cochlear nucleus are characterized by intrinsic oscillations with short average interspike intervals (ISIs) and relative level independence of their response (Pfeiffer, Exp Brain Res 1:220-235, 1966; Blackburn and Sachs, J Neurophysiol 62:1303-1329, 1989), properties which are unattained by models of single chopper neurons (e.g., Rothman and Manis, J Neurophysiol 89:3070-3082, 2003a). In order to achieve short ISIs, we optimized the time constants of Rothman and Manis single neuron model with genetic algorithms. Some parameters in the optimization, such as the temperature and the capacity of the cell, turned out to be crucial for the required acceleration of their response. In order to achieve the relative level independence, we have simulated an interconnected network consisting of Rothman and Manis neurons. The results indicate that by stabilization of intrinsic oscillations, it is possible to simulate the physiologically observed level independence of ISIs. As previously reviewed and demonstrated (Bahmer and Langner, Biol Cybern 95:371-379, 2006a), chopper neurons show a preference for ISIs which are multiples of 0.4 ms. It was also demonstrated that the network consisting of two optimized Rothman and Manis neurons which activate each other with synaptic delays of 0.4 ms shows a preference for ISIs of 0.8 ms. Oscillations with various multiples of 0.4 ms as ISIs may be derived from neurons in a more complex network that is activated by simultaneous input of an onset neuron and several auditory nerve fibers.
耳蜗核中的切波神经元具有固有振荡的特征,其平均峰间间隔(ISI)较短,且反应具有相对的电平独立性(Pfeiffer,《实验脑研究》1:220 - 235,1966;Blackburn和Sachs,《神经生理学杂志》62:1303 - 1329,1989),而单个切波神经元模型无法实现这些特性(例如,Rothman和Manis,《神经生理学杂志》89:3070 - 3082,2003a)。为了实现较短的ISI,我们使用遗传算法优化了Rothman和Manis单神经元模型的时间常数。优化过程中的一些参数,如温度和细胞容量,对于实现所需的反应加速至关重要。为了实现相对电平独立性,我们模拟了一个由Rothman和Manis神经元组成的互连网络。结果表明,通过稳定固有振荡,可以模拟生理上观察到的ISI电平独立性。如先前综述和证明的那样(Bahmer和Langner,《生物控制论》95:371 - 379,2006a),切波神经元对0.4毫秒倍数的ISI表现出偏好。还证明了由两个优化的Rothman和Manis神经元组成的网络,它们以0.4毫秒的突触延迟相互激活,对0.8毫秒的ISI表现出偏好。以0.4毫秒倍数作为ISI的各种振荡可能源自一个更复杂的网络中的神经元,该网络由起始神经元和几条听神经纤维的同时输入激活。