Hardie R C, Voss D, Pongs O, Laughlin S B
Cambridge University, Department of Zoology, England.
Neuron. 1991 Mar;6(3):477-86. doi: 10.1016/0896-6273(91)90255-x.
The Shaker gene, responsible for A-type potassium channels in Drosophila muscle, encodes a large family of transcripts capable of generating a variety of kinetically distinct A channels when expressed in oocytes. We describe a distinct class of A channel encoded by the Shaker gene in a novel preparation of dissociated Drosophila photoreceptors. Whole-cell recordings reveal a rapidly inactivating A current that is absent in Shaker mutants and that can be readily isolated in cell-attached patches. Although very similar to their muscle counterparts, the photoreceptor A channels show a striking 40-50 mV negative shift in their voltage-operating range. Two mutations (ShE62 and T(1;Y)W32), which exclude only certain classes of Shaker transcripts, were used to show that photoreceptor A channels are encoded by multiple transcripts distinct from those encoding muscle A channels, while PCR techniques identified four transcripts (ShA1, ShA2, ShG1, and ShG2) in mRNA from dissected retina.