Suppr超能文献

钙激活钾通道降低网络兴奋性,提高感觉信息传递和感知的适应性和能量效率。

Ca-Activated K Channels Reduce Network Excitability, Improving Adaptability and Energetics for Transmitting and Perceiving Sensory Information.

机构信息

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.

Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom.

出版信息

J Neurosci. 2019 Sep 4;39(36):7132-7154. doi: 10.1523/JNEUROSCI.3213-18.2019. Epub 2019 Jul 26.

Abstract

Ca-activated K channels (BK and SK) are ubiquitous in synaptic circuits, but their role in network adaptation and sensory perception remains largely unknown. Using electrophysiological and behavioral assays and biophysical modeling, we discover how visual information transfer in mutants lacking the BK channel ( ), SK channel ( ), or both ( ;; ) is shaped in the female fruit fly () R1-R6 photoreceptor-LMC circuits (R-LMC-R system) through synaptic feedforward-feedback interactions and reduced R1-R6 and K conductances. This homeostatic compensation is specific for each mutant, leading to distinctive adaptive dynamics. We show how these dynamics inescapably increase the energy cost of information and promote the mutants' distorted motion perception, determining the true price and limits of chronic homeostatic compensation in an genetic animal model. These results reveal why Ca-activated K channels reduce network excitability (energetics), improving neural adaptability for transmitting and perceiving sensory information. In this study, we directly link and experiments with detailed stochastically operating biophysical models to extract new mechanistic knowledge of how photoreceptor-interneuron-photoreceptor (R-LMC-R) circuitry homeostatically retains its information sampling and transmission capacity against chronic perturbations in its ion-channel composition, and what is the cost of this compensation and its impact on optomotor behavior. We anticipate that this novel approach will provide a useful template to other model organisms and computational neuroscience, in general, in dissecting fundamental mechanisms of homeostatic compensation and deepening our understanding of how biological neural networks work.

摘要

钙激活钾通道(BK 和 SK)在突触回路中普遍存在,但它们在网络适应和感觉感知中的作用在很大程度上仍不清楚。我们使用电生理和行为测定以及生物物理建模,发现缺乏 BK 通道()、SK 通道()或两者(;;;)的突变体如何通过突触前馈-反馈相互作用和减少 R1-R6 和 K 电导来塑造雌性果蝇()R1-R6 光感受器-LMC 回路(R-LMC-R 系统)中的视觉信息传递。这种同型补偿是每个突变体特有的,导致独特的适应动力学。我们展示了这些动力学如何不可避免地增加信息的能量成本,并促进突变体扭曲的运动感知,从而确定慢性同型补偿在遗传动物模型中的真正代价和限制。这些结果揭示了为什么钙激活钾通道降低网络兴奋性(能量学),改善了传递和感知感觉信息的神经适应性。在这项研究中,我们直接将和实验与详细的随机操作生物物理模型联系起来,以提取关于感光器-中间神经元-感光器(R-LMC-R)电路如何通过其离子通道组成的慢性干扰来维持其信息采样和传输能力的新机制知识,以及这种补偿的代价及其对光运动行为的影响。我们预计,这种新方法将为其他模式生物和一般计算神经科学提供有用的模板,以剖析同型补偿的基本机制,并加深我们对生物神经网络如何工作的理解。

相似文献

5
Nonreciprocal homeostatic compensation in potassium channel mutants.钾通道突变体中的非互惠性稳态补偿
J Neurophysiol. 2017 Jun 1;117(6):2125-2136. doi: 10.1152/jn.00002.2017. Epub 2017 Mar 15.

本文引用的文献

6
How a fly photoreceptor samples light information in time.果蝇光感受器如何在时间上采样光信息。
J Physiol. 2017 Aug 15;595(16):5427-5437. doi: 10.1113/JP273645. Epub 2017 Apr 17.
10
Phototransduction in Drosophila.果蝇的光转导。
Curr Opin Neurobiol. 2015 Oct;34:37-45. doi: 10.1016/j.conb.2015.01.008. Epub 2015 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验