Suppr超能文献

挖掘蛋白质组学的串联质谱数据以获取多反应监测跃迁。

Mining proteomic MS/MS data for MRM transitions.

作者信息

Chem Mead Jennifer A, Bianco Luca, Bessant Conrad

机构信息

Bioinformatics Group, Cranfield University, Cranfield, Bedfordshire, UK.

出版信息

Methods Mol Biol. 2010;604:187-99. doi: 10.1007/978-1-60761-444-9_13.

Abstract

Multiple reaction monitoring (MRM) of peptides is a popular proteomics technique that employs tandem mass spectrometry to quantify selected proteins of interest, such as those previously identified in differential protein identification studies. Using this technique, the specificity of precursor to product transitions is exploited to determine the absolute quantity of multiple proteins in a single sample. Selection of suitable transitions is critical for the success of MRM experiments, but accurate theoretical prediction of fragmentation patterns and peptide signal intensity is currently not possible. A recently proposed solution to this problem is to combine knowledge of the preferred properties of transitions for MRM, taken from expert practitioners, with MS/MS evidence extracted from a proteomics data repository. In addition, by predicting retention time for each peptide candidate, it allows selection of several compatible transition candidates that can be monitored simultaneously, permitting MRM. In this chapter, we explain how to go about designing transitions using the web-based transition design tool, MRMaid, which leverages high quality MS/MS evidence from the Genome Annotating Proteomic Pipeline (GAPP).

摘要

肽段的多反应监测(MRM)是一种流行的蛋白质组学技术,它利用串联质谱对选定的目标蛋白质进行定量,比如那些先前在差异蛋白质鉴定研究中已鉴定出的蛋白质。使用该技术时,利用前体到产物转变的特异性来确定单个样品中多种蛋白质的绝对含量。选择合适的转变对MRM实验的成功至关重要,但目前尚无法对裂解模式和肽信号强度进行准确的理论预测。针对这一问题,最近提出的一种解决方案是将来自专业从业者的关于MRM转变的优选特性的知识与从蛋白质组学数据存储库中提取的MS/MS证据相结合。此外,通过预测每个肽候选物的保留时间,可以选择几个可同时监测的兼容转变候选物,从而实现MRM。在本章中,我们将解释如何使用基于网络的转变设计工具MRMaid来设计转变,该工具利用了来自基因组注释蛋白质组学管道(GAPP)的高质量MS/MS证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验