Suppr超能文献

遗传剖析多巴胺能和去甲肾上腺素能对早期幼鱼儿茶酚胺能通路上的贡献。

Genetic dissection of dopaminergic and noradrenergic contributions to catecholaminergic tracts in early larval zebrafish.

机构信息

Developmental Biology, Institute of Biology I, University of Freiburg, D-79104 Freiburg, Germany.

出版信息

J Comp Neurol. 2010 Feb 15;518(4):439-58. doi: 10.1002/cne.22214.

Abstract

The catecholamines dopamine and noradrenaline provide some of the major neuromodulatory systems with far-ranging projections in the brain and spinal cord of vertebrates. However, development of these complex systems is only partially understood. Zebrafish provide an excellent model for genetic analysis of neuronal specification and axonal projections in vertebrates. Here, we analyze the ontogeny of the catecholaminergic projections in zebrafish embryos and larvae up to the fifth day of development and establish the basic scaffold of catecholaminergic connectivity. The earliest dopaminergic diencephalospinal projections do not navigate along the zebrafish primary neuron axonal scaffold but establish their own tracts at defined ventrolateral positions. By using genetic tools, we study quantitative and qualitative contributions of noradrenergic and defined dopaminergic groups to the catecholaminergic scaffold. Suppression of Tfap2a activity allows us to eliminate noradrenergic contributions, and depletion of Otp activity deletes mammalian A11-like Otp-dependent ventral diencephalic dopaminergic groups. This analysis reveals a predominant contribution of Otp-dependent dopaminergic neurons to diencephalospinal as well as hypothalamic catecholaminergic tracts. In contrast, noradrenergic projections make only a minor contribution to hindbrain and spinal catecholaminergic tracts. Furthermore, we can demonstrate that, in zebrafish larvae, ascending catecholaminergic projections to the telencephalon are generated exclusively by Otp-dependent diencephalic dopaminergic neurons as well as by hindbrain noradrenergic groups. Our data reveal the Otp-dependent A11-type dopaminergic neurons as the by far most prominent dopaminergic system in larval zebrafish. These findings are consistent with a hypothesis that Otp-dependent dopaminergic neurons establish the major modulatory system for somatomotor and somatosensory circuits in larval fish.

摘要

儿茶酚胺多巴胺和去甲肾上腺素为脊椎动物的大脑和脊髓中的一些主要神经调制系统提供了部分支持,其投射范围广泛。然而,这些复杂系统的发育过程还只是部分被了解。斑马鱼为脊椎动物神经元特化和轴突投射的遗传分析提供了极好的模型。在这里,我们分析了斑马鱼胚胎和幼体发育到第五天的儿茶酚胺能投射的发生,并建立了儿茶酚胺能连接的基本支架。最早的多巴胺能脑-脊髓投射并不沿着斑马鱼的初级神经元轴突支架导航,而是在特定的腹外侧位置建立自己的轨迹。通过使用遗传工具,我们研究了去甲肾上腺素能和特定的多巴胺能群对儿茶酚胺能支架的定量和定性贡献。抑制 Tfap2a 活性可以使我们消除去甲肾上腺素能的贡献,而 Otp 活性的耗尽则会删除哺乳动物 A11 样的 Otp 依赖性腹侧神经节多巴胺能群。这种分析揭示了 Otp 依赖性多巴胺能神经元对脑-脊髓和下丘脑儿茶酚胺能束的主要贡献。相比之下,去甲肾上腺素能投射对后脑和脊髓的儿茶酚胺能束的贡献较小。此外,我们可以证明,在斑马鱼幼体中,向端脑的上升性儿茶酚胺能投射是由 Otp 依赖性的背侧多巴胺能神经元以及后脑的去甲肾上腺素能群产生的。我们的数据显示,Ot 依赖性 A11 型多巴胺能神经元是幼鱼中迄今为止最突出的多巴胺能系统。这些发现与以下假设一致,即 Otp 依赖性多巴胺能神经元为幼鱼的躯体运动和躯体感觉回路建立了主要的调制系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a61/2841826/be51ff291f50/cne0518-0439-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验