Arizona State University, Tempe, Arizona 85287-8706, USA.
J Am Chem Soc. 2010 Jan 20;132(2):596-600. doi: 10.1021/ja9071496.
Understanding and controlling the electrochemical stability or corrosion behavior of nanometer-scale solids is vitally important in a variety of applications such as nanoscale electronics, sensing, and catalysis. For many applications, the increased surface to volume ratio achieved by particle size reduction leads to lower materials cost and higher efficiency, but there are questions as to whether the intrinsic stability of materials also decreases with particle size. An important example of this relates to the stability of Pt catalysts in, for example, proton exchange fuel cells. In this Article, we use electrochemical scanning tunneling microscopy to, for the first time, directly examine the stability of individual Pt nanoparticles as a function of applied potential. We combine this experimental study with ab initio computations to determine the stability, passivation, and dissolution behavior of Pt as a function of particle size and potential. Both approaches clearly show that smaller Pt particles dissolve well below the bulk dissolution potential and through a different mechanism. Pt dissolution from a nanoparticle occurs by direct electro-oxidation of Pt to soluble Pt(2+) cations, unlike bulk Pt, which dissolves from the oxide. These results have important implications for understanding the stability of Pt and Pt alloy catalysts in fuel cell architectures, and for the stability of nanoparticles in general.
理解和控制纳米尺度固体的电化学稳定性或腐蚀行为在各种应用中至关重要,例如纳米尺度电子学、传感和催化。对于许多应用,通过减小颗粒尺寸实现的增加的表面积与体积比导致更低的材料成本和更高的效率,但存在一个问题,即材料的固有稳定性是否也随颗粒尺寸减小。这方面的一个重要例子涉及例如质子交换燃料电池中 Pt 催化剂的稳定性。在本文中,我们首次使用电化学扫描隧道显微镜直接研究单个 Pt 纳米颗粒作为施加电势的函数的稳定性。我们将这项实验研究与从头计算相结合,以确定 Pt 的稳定性、钝化和溶解行为作为颗粒尺寸和电势的函数。这两种方法都清楚地表明,较小的 Pt 颗粒在低于体相溶解电势以下并且通过不同的机制很好地溶解。与块状 Pt 不同,Pt 从纳米颗粒中的溶解是通过 Pt 直接电氧化为可溶性 Pt(2+)阳离子发生的,而块状 Pt 是从氧化物中溶解的。这些结果对于理解燃料电池结构中 Pt 和 Pt 合金催化剂的稳定性以及纳米颗粒的一般稳定性具有重要意义。