Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
Nat Commun. 2023 May 25;14(1):3004. doi: 10.1038/s41467-023-38758-1.
Surface Pourbaix diagrams are critical to understanding the stability of nanomaterials in electrochemical environments. Their construction based on density functional theory is, however, prohibitively expensive for real-scale systems, such as several nanometer-size nanoparticles (NPs). Herein, with the aim of accelerating the accurate prediction of adsorption energies, we developed a bond-type embedded crystal graph convolutional neural network (BE-CGCNN) model in which four bonding types were treated differently. Owing to the enhanced accuracy of the bond-type embedding approach, we demonstrate the construction of reliable Pourbaix diagrams for very large-size NPs involving up to 6525 atoms (approximately 4.8 nm in diameter), which enables the exploration of electrochemical stability over various NP sizes and shapes. BE-CGCNN-based Pourbaix diagrams well reproduce the experimental observations with increasing NP size. This work suggests a method for accelerated Pourbaix diagram construction for real-scale and arbitrarily shaped NPs, which would significantly open up an avenue for electrochemical stability studies.
表面 Pourbaix 图对于理解纳米材料在电化学环境中的稳定性至关重要。然而,基于密度泛函理论的构建对于实际规模的系统(如几个纳米尺寸的纳米粒子 (NPs))来说过于昂贵。在此,为了加速吸附能的准确预测,我们开发了一种键型嵌入晶体图卷积神经网络 (BE-CGCNN) 模型,其中四种键型被不同对待。由于键型嵌入方法的准确性得到了提高,我们成功构建了可靠的 Pourbaix 图,用于非常大尺寸的 NPs,涉及多达 6525 个原子(直径约为 4.8nm),从而可以探索不同 NP 尺寸和形状的电化学稳定性。基于 BE-CGCNN 的 Pourbaix 图很好地再现了随着 NP 尺寸增加的实验观察结果。这项工作为实际规模和任意形状的 NPs 的加速 Pourbaix 图构建提供了一种方法,这将为电化学稳定性研究开辟一条重要途径。