Suppr超能文献

插补方法在全基因组关联研究中类风湿关节炎数据分析中的应用。

Application of imputation methods to the analysis of rheumatoid arthritis data in genome-wide association studies.

作者信息

Childers Douglas K, Kang Guolian, Liu Nianjun, Gao Guimin, Zhang Kui

机构信息

Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.

出版信息

BMC Proc. 2009 Dec 15;3 Suppl 7(Suppl 7):S24. doi: 10.1186/1753-6561-3-s7-s24.

Abstract

Most genetic association studies only genotype a small proportion of cataloged single-nucleotide polymorphisms (SNPs) in regions of interest. With the catalogs of high-density SNP data available (e.g., HapMap) to researchers today, it has become possible to impute genotypes at untyped SNPs. This in turn allows us to test those untyped SNPs, the motivation being to increase power in association studies. Several imputation methods and corresponding software packages have been developed for this purpose. The objective of our study is to apply three widely used imputation methods and corresponding software packages to a data from a genome-wide association study of rheumatoid arthritis from the North American Rheumatoid Arthritis Consortium in Genetic Analysis Workshop 16, to compare the performances of the three methods, to evaluate their strengths and weaknesses, and to identify additional susceptibility loci underlying rheumatoid arthritis. The software packages used in this paper included a program for Bayesian imputation-based association mapping (BIMBAM), a program for imputing unobserved genotypes in case-control association studies (IMPUTE), and a program for testing untyped alleles (TUNA). We found some untyped SNP that showed significant association with rheumatoid arthritis. Among them, a few of these were not located near any typed SNP that was found to be significant and thus may be worth further investigation.

摘要

大多数基因关联研究仅对感兴趣区域中一小部分已编目的单核苷酸多态性(SNP)进行基因分型。如今研究人员可获取高密度SNP数据目录(例如HapMap),从而有可能推断未分型SNP的基因型。这进而使我们能够对那些未分型的SNP进行检验,目的是提高关联研究的效能。为此已经开发了几种推断方法及相应的软件包。我们研究的目的是将三种广泛使用的推断方法及相应的软件包应用于遗传分析研讨会16上来自北美类风湿关节炎联盟的类风湿关节炎全基因组关联研究的数据,比较这三种方法的性能,评估它们的优缺点,并确定类风湿关节炎潜在的其他易感基因座。本文使用的软件包包括一个基于贝叶斯推断的关联作图程序(BIMBAM)、一个在病例对照关联研究中推断未观察到的基因型的程序(IMPUTE)以及一个检验未分型等位基因的程序(TUNA)。我们发现了一些与类风湿关节炎显著相关的未分型SNP。其中,有一些不在任何已发现的显著分型SNP附近,因此可能值得进一步研究。

相似文献

4
Assessment of genotype imputation methods.基因型填充方法的评估。
BMC Proc. 2009 Dec 15;3 Suppl 7(Suppl 7):S5. doi: 10.1186/1753-6561-3-s7-s5.
6
Practical issues in imputation-based association mapping.基于插补的关联映射中的实际问题。
PLoS Genet. 2008 Dec;4(12):e1000279. doi: 10.1371/journal.pgen.1000279. Epub 2008 Dec 5.
9
Assessing accuracy of genotype imputation in American Indians.评估美洲印第安人群中基因型填充的准确性。
PLoS One. 2014 Jul 11;9(7):e102544. doi: 10.1371/journal.pone.0102544. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验