Department of Psychiatry, Washington University Medical School, St. Louis, Missouri 63108, USA.
Genet Epidemiol. 2009;33 Suppl 1(Suppl 1):S19-23. doi: 10.1002/gepi.20467.
This contribution summarizes the work done by six independent teams of investigators to identify the genetic and non-genetic variants that work together or independently to predispose to disease. The theme addressed in these studies is multistage strategies in the context of genome-wide association studies (GWAS). The work performed comes from Group 3 of the Genetic Analysis Workshop 16 held in St. Louis, Missouri in September 2008. These six studies represent a diversity of multistage methods of which five are applied to the North American Rheumatoid Arthritis Consortium rheumatoid arthritis case-control data, and one method is applied to the low-density lipoprotein phenotype in the Framingham Heart Study simulated data. In the first stage of analyses, the majority of studies used a variety of screening techniques to reduce the noise of single-nucleotide polymorphisms purportedly not involved in the phenotype of interest. Three studies analyzed the data using penalized regression models, either LASSO or the elastic net. The main result was a reconfirmation of the involvement of variants in the HLA region on chromosome 6 with rheumatoid arthritis. The hope is that the intense computational methods highlighted in this group of papers will become useful tools in future GWAS.
本研究总结了六个独立研究小组的工作,旨在确定共同或独立导致疾病的遗传和非遗传变异。这些研究中探讨的主题是全基因组关联研究(GWAS)背景下的多阶段策略。这项工作来自于 2008 年 9 月在密苏里州圣路易斯举行的第 16 届遗传分析工作坊的第 3 组。这六个研究代表了多种多阶段方法,其中五个应用于北美类风湿关节炎联盟类风湿关节炎病例对照数据,一个方法应用于弗雷明汉心脏研究模拟数据中的低密度脂蛋白表型。在分析的第一阶段,大多数研究使用了各种筛选技术来减少据称与目标表型无关的单核苷酸多态性的噪声。三项研究使用惩罚回归模型(LASSO 或弹性网络)分析数据。主要结果是再次证实了 HLA 区域的变体与类风湿关节炎有关。人们希望本研究组强调的密集计算方法将成为未来 GWAS 的有用工具。