Suppr超能文献

多个基因变异在预测2型糖尿病风险中的作用。

The effect of multiple genetic variants in predicting the risk of type 2 diabetes.

作者信息

Lu Qing, Song Yeunjoo, Wang Xuefeng, Won Sungho, Cui Yuehua, Elston Robert C

机构信息

Department of Epidemiology, Michigan State University, B601 West Fee Hall, East Lansing, Michigan 48824 USA.

出版信息

BMC Proc. 2009 Dec 15;3 Suppl 7(Suppl 7):S49. doi: 10.1186/1753-6561-3-s7-s49.

Abstract

While recently performed genome-wide association studies have advanced the identification of genetic variants predisposing to type 2 diabetes (T2D), the potential application of these novel findings for disease prediction and prevention has not been well studied. Diabetes prediction and prevention have become urgent issues owing to the rapidly increasing prevalence of diabetes and its associated mortality, morbidity, and health care cost. New prediction approaches using genetic markers could facilitate early identification of high risk sub-groups of the population so that appropriate prevention methods could be effectively applied to delay, or even prevent, disease onset.This paper assessed 18 recently identified T2D loci for their potential role in diabetes prediction. We built a new predictive genetic test for T2D using the Framingham Heart Study dataset. Using logistic regression and 15 additional loci, the new test was slightly improved over the existing test using just three loci. A formal comparison between the two tests suggests no significant improvement. We further formed a predictive genetic test for identifying early onset T2D and found higher classification accuracy for this test, not only indicating that these 18 loci have great potential for predicting early onset T2D, but also suggesting that they may play important roles in causing early-onset T2D.To further improve the test's accuracy, we applied a newly developed nonparametric method capable of capturing high order interactions to the data, but it did not outperform a logistic regression that only considers single-locus effects. This could be explained by the absence of gene-gene interactions among the 18 loci.

摘要

虽然最近进行的全基因组关联研究推进了对2型糖尿病(T2D)易感基因变异的识别,但这些新发现用于疾病预测和预防的潜在应用尚未得到充分研究。由于糖尿病患病率及其相关死亡率、发病率和医疗保健成本的迅速上升,糖尿病预测和预防已成为紧迫问题。使用遗传标记的新预测方法可以促进对高危人群亚组的早期识别,从而能够有效应用适当的预防方法来延缓甚至预防疾病发作。本文评估了最近确定的18个T2D基因座在糖尿病预测中的潜在作用。我们使用弗雷明汉心脏研究数据集构建了一种新的T2D预测基因检测方法。使用逻辑回归和另外15个基因座,新检测方法比仅使用三个基因座的现有检测方法略有改进。两种检测方法的正式比较表明没有显著改善。我们进一步构建了一种用于识别早发型T2D的预测基因检测方法,并发现该检测方法具有更高的分类准确性,这不仅表明这18个基因座在预测早发型T2D方面具有巨大潜力,还表明它们可能在早发型T2D的发病中起重要作用。为了进一步提高检测方法的准确性,我们将一种新开发的能够捕捉高阶相互作用的非参数方法应用于数据,但它并没有优于仅考虑单基因座效应的逻辑回归。这可能是由于这18个基因座之间不存在基因-基因相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9680/2795948/f63b0b6a6478/1753-6561-3-S7-S49-1.jpg

相似文献

1
The effect of multiple genetic variants in predicting the risk of type 2 diabetes.
BMC Proc. 2009 Dec 15;3 Suppl 7(Suppl 7):S49. doi: 10.1186/1753-6561-3-s7-s49.
2
Assessment of whole-genome regression for type II diabetes.
PLoS One. 2015 Apr 17;10(4):e0123818. doi: 10.1371/journal.pone.0123818. eCollection 2015.
5
Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis.
PLoS Med. 2018 Sep 21;15(9):e1002654. doi: 10.1371/journal.pmed.1002654. eCollection 2018 Sep.
6
Genetics of Type 2 Diabetes: Implications from Large-Scale Studies.
Curr Diab Rep. 2022 May;22(5):227-235. doi: 10.1007/s11892-022-01462-3. Epub 2022 Mar 19.
8
The first exome wide association study in Tunisia: identification of candidate loci and pathways with biological relevance for type 2 diabetes.
Front Endocrinol (Lausanne). 2023 Dec 19;14:1293124. doi: 10.3389/fendo.2023.1293124. eCollection 2023.
9
Identification of allelic heterogeneity at type-2 diabetes loci and impact on prediction.
PLoS One. 2014 Nov 13;9(11):e113072. doi: 10.1371/journal.pone.0113072. eCollection 2014.

引用本文的文献

4
The construction of risk prediction models using GWAS data and its application to a type 2 diabetes prospective cohort.
PLoS One. 2014 Mar 20;9(3):e92549. doi: 10.1371/journal.pone.0092549. eCollection 2014.
5
Annotating individual human genomes.
Genomics. 2011 Oct;98(4):233-41. doi: 10.1016/j.ygeno.2011.07.006. Epub 2011 Aug 2.
6
Predicting diabetic nephropathy using a multifactorial genetic model.
PLoS One. 2011 Apr 14;6(4):e18743. doi: 10.1371/journal.pone.0018743.
8
9
Phenotype definition and development--contributions from Group 7.
Genet Epidemiol. 2009;33 Suppl 1(Suppl 1):S40-4. doi: 10.1002/gepi.20471.

本文引用的文献

1
Using the optimal robust receiver operating characteristic (ROC) curve for predictive genetic tests.
Biometrics. 2010 Jun;66(2):586-93. doi: 10.1111/j.1541-0420.2009.01278.x. Epub 2009 Jun 8.
2
3
Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk.
Diabetes. 2008 Nov;57(11):3129-35. doi: 10.2337/db08-0504. Epub 2008 Jun 30.
5
Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes.
Science. 2007 Jun 1;316(5829):1336-41. doi: 10.1126/science.1142364. Epub 2007 Apr 26.
6
Combining information from common type 2 diabetes risk polymorphisms improves disease prediction.
PLoS Med. 2006 Oct;3(10):e374. doi: 10.1371/journal.pmed.0030374.
7
Diet and exercise delay onset of type 2 diabetes, say US experts.
Lancet. 2001 Aug 18;358(9281):565. doi: 10.1016/S0140-6736(01)05751-8.
8
Early-onset type 2 diabetes: metabolic and genetic characterization in the mexican population.
J Clin Endocrinol Metab. 2001 Jan;86(1):220-6. doi: 10.1210/jcem.86.1.7134.
9
A simulation study of the number of events per variable in logistic regression analysis.
J Clin Epidemiol. 1996 Dec;49(12):1373-9. doi: 10.1016/s0895-4356(96)00236-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验