Kulma Magdalena, Hereć Monika, Grudziński Wojciech, Anderluh Gregor, Gruszecki Wiesław I, Kwiatkowska Katarzyna, Sobota Andrzej
Department of Cell Biology, The Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland.
Biochim Biophys Acta. 2010 Mar;1798(3):471-81. doi: 10.1016/j.bbamem.2009.12.004. Epub 2009 Dec 16.
Lysenin is a self-assembling, pore-forming toxin which specifically recognizes sphingomyelin. Mutation of tryptophan 20 abolishes lysenin oligomerization and cytolytic activity. We studied the interaction of lysenin WT and W20A with sphingomyelin in membranes of various lipid compositions which, according to atomic force microscopy studies, generated either homo- or heterogeneous sphingomyelin distribution. Liposomes composed of SM/DOPC, SM/DOPC/cholesterol and SM/DPPC/cholesterol could bind the highest amounts of GST-lysenin WT, as shown by surface plasmon resonance analysis. These lipid compositions enhanced the release of carboxyfluorescein from liposomes induced by lysenin WT, pointing to the importance of heterogeneous sphingomyelin distribution for lysenin WT binding and oligomerization. Lysenin W20A bound more weakly to sphingomyelin-containing liposomes than did lysenin WT. The same amounts of lysenin W20A bound to sphingomyelin mixed with either DOPC or DPPC, indicating that the binding was not affected by sphingomyelin distribution in the membranes. The mutant lysenin had a limited ability to penetrate hydrophobic region of the membrane as indicated by measurements of surface pressure changes. When applied to detect sphingomyelin on the cell surface, lysenin W20A formed large conglomerates on the membrane, different from small and regular clusters of lysenin WT. Only lysenin WT recognized sphingomyelin pool affected by formation of raft-based signaling platforms. During fractionation of Triton X-100 cell lysates, SDS-resistant oligomers of lysenin WT associated with membrane fragments insoluble in Triton X-100 while monomers of lysenin W20A partitioned to Triton X-100-soluble membrane fractions. Altogether, the data suggest that oligomerization of lysenin WT is a prerequisite for its docking in raft-related domains.
溶血素是一种能自我组装、形成孔道的毒素,它能特异性识别鞘磷脂。色氨酸20的突变会消除溶血素的寡聚化和细胞溶解活性。我们研究了野生型溶血素(WT)和W20A突变型溶血素与不同脂质组成膜中鞘磷脂的相互作用,根据原子力显微镜研究,这些膜产生了均匀或不均匀的鞘磷脂分布。表面等离子体共振分析表明,由鞘磷脂/二油酰磷脂酰胆碱(SM/DOPC)、鞘磷脂/二油酰磷脂酰胆碱/胆固醇(SM/DOPC/胆固醇)和鞘磷脂/二棕榈酰磷脂酰胆碱/胆固醇(SM/DPPC/胆固醇)组成的脂质体能够结合最多量的谷胱甘肽-S-转移酶(GST)-野生型溶血素。这些脂质组成增强了野生型溶血素诱导的脂质体中羧基荧光素的释放,表明不均匀的鞘磷脂分布对野生型溶血素的结合和寡聚化很重要。与野生型溶血素相比,W20A突变型溶血素与含鞘磷脂的脂质体结合较弱。相同量的W20A突变型溶血素与与二油酰磷脂酰胆碱(DOPC)或二棕榈酰磷脂酰胆碱(DPPC)混合的鞘磷脂结合,表明这种结合不受膜中鞘磷脂分布的影响。如表面压力变化测量所示,突变型溶血素穿透膜疏水区域的能力有限。当用于检测细胞表面的鞘磷脂时,W20A突变型溶血素在膜上形成大的聚集体,与野生型溶血素的小而规则的簇不同。只有野生型溶血素能识别受基于脂筏的信号平台形成影响的鞘磷脂池。在Triton X-100细胞裂解物分级分离过程中,野生型溶血素的耐十二烷基硫酸钠(SDS)寡聚体与不溶于Triton X-100的膜片段相关联,而W20A突变型溶血素的单体则分配到Triton X-100可溶的膜组分中。总之,数据表明野生型溶血素的寡聚化是其停靠在脂筏相关结构域的前提条件。