The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22187-92. doi: 10.1073/pnas.0905767106. Epub 2009 Dec 14.
DNA methylation and histone modification are two major epigenetic pathways that interplay to regulate transcriptional activity and other genome functions. Dnmt3L is a regulatory factor for the de novo DNA methyltransferases Dnmt3a and Dnmt3b. Although recent biochemical studies have revealed that Dnmt3L binds to the tail of histone H3 with unmethylated lysine 4 in vitro, the requirement of chromatin components for DNA methylation has not been examined, and functional evidence for the connection of histone tails to DNA methylation is still lacking. Here, we used the budding yeast Saccharomyces cerevisiae as a model system to investigate the chromatin determinants of DNA methylation through ectopic expression of murine Dnmt3a and Dnmt3L. We found that the N terminus of histone H3 tail is required for de novo methylation, while the central part encompassing lysines 9 and 27, as well as the H4 tail are dispensable. DNA methylation occurs predominantly in heterochromatin regions lacking H3K4 methylation. In mutant strains depleted of H3K4 methylation, the DNA methylation level increased 5-fold. The methylation activity of Dnmt3a largely depends on the Dnmt3L's PHD domain recognizing the histone H3 tail with unmethylated lysine 4. Functional analysis of Dnmt3L in mouse ES cells confirmed that the chromatin-recognition ability of Dnmt3L's PHD domain is indeed required for efficient methylation at the promoter of the endogenous Dnmt3L gene. These findings establish the N terminus of histone H3 tail with an unmethylated lysine 4 as a chromatin determinant for DNA methylation.
DNA 甲基化和组蛋白修饰是两种主要的表观遗传途径,它们相互作用调节转录活性和其他基因组功能。Dnmt3L 是从头甲基转移酶 Dnmt3a 和 Dnmt3b 的调节因子。尽管最近的生化研究表明 Dnmt3L 体外与未甲基化的赖氨酸 4 结合组蛋白 H3 的尾部,但尚未检查染色质成分对 DNA 甲基化的要求,并且组蛋白尾部与 DNA 甲基化的功能联系仍然缺乏。在这里,我们使用 budding 酵母 Saccharomyces cerevisiae 作为模型系统,通过异位表达鼠 Dnmt3a 和 Dnmt3L 来研究 DNA 甲基化的染色质决定因素。我们发现组蛋白 H3 尾部的 N 端对于从头甲基化是必需的,而包含赖氨酸 9 和 27 的中心部分以及 H4 尾部是可有可无的。DNA 甲基化主要发生在缺乏 H3K4 甲基化的异染色质区域。在缺乏 H3K4 甲基化的突变菌株中,DNA 甲基化水平增加了 5 倍。Dnmt3a 的甲基化活性在很大程度上取决于 Dnmt3L 的 PHD 结构域识别未甲基化的赖氨酸 4 结合的组蛋白 H3 尾部。在小鼠 ES 细胞中的 Dnmt3L 功能分析证实,Dnmt3L 的 PHD 结构域的染色质识别能力确实是在 Dnmt3L 内源性基因启动子处有效甲基化所必需的。这些发现确立了具有未甲基化赖氨酸 4 的组蛋白 H3 尾部 N 端作为 DNA 甲基化的染色质决定因素。