Suppr超能文献

CRAC 通道中离子渗透的结构决定因素。

Structural determinants of ion permeation in CRAC channels.

机构信息

Department of Molecular Pharmacology and Biological Chemistry, Northwestern University School of Medicine, Chicago, IL 60611, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22516-21. doi: 10.1073/pnas.0909574106. Epub 2009 Dec 11.

Abstract

CRAC channels generate Ca(2+) signals critical for the activation of immune cells and exhibit an intriguing pore profile distinguished by extremely high Ca(2+) selectivity, low Cs(+) permeability, and small unitary conductance. To identify the ion conduction pathway and gain insight into the structural bases of these permeation characteristics, we introduced cysteine residues in the CRAC channel pore subunit, Orai1, and probed their accessibility to various thiol-reactive reagents. Our results indicate that the architecture of the ion conduction pathway is characterized by a flexible outer vestibule formed by the TM1-TM2 loop, which leads to a narrow pore flanked by residues of a helical TM1 segment. Residues in TM3, and specifically, E190, a residue considered important for ion selectivity, are not close to the pore. Moreover, the outer vestibule does not significantly contribute to ion selectivity, implying that Ca(2+) selectivity is conferred mainly by E106. The ion conduction pathway is sufficiently narrow along much of its length to permit stable coordination of Cd(2+) by several TM1 residues, which likely explains the slow flux of ions within the restrained geometry of the pore. These results provide a structural framework to understand the unique permeation properties of CRAC channels.

摘要

CRAC 通道产生的 Ca(2+)信号对于免疫细胞的激活至关重要,其通道孔具有独特的孔道结构,表现出极高的 Ca(2+)选择性、低 Cs(+)渗透性和较小的单通道电导。为了确定离子传导途径,并深入了解这些渗透特性的结构基础,我们在 CRAC 通道孔亚基 Orai1 中引入了半胱氨酸残基,并探测了它们对各种巯基反应试剂的可及性。我们的结果表明,离子传导途径的结构特征是由 TM1-TM2 环形成的灵活的外腔室,其通向由 TM1 螺旋段的残基形成的狭窄孔。TM3 中的残基,特别是 E190,被认为对离子选择性很重要,但它并不靠近孔道。此外,外腔室对离子选择性没有显著贡献,这意味着 Ca(2+)选择性主要由 E106 赋予。在通道的大部分长度上,离子传导途径足够狭窄,可以允许几个 TM1 残基稳定地协调 Cd(2+),这可能解释了在受限的孔道几何形状内离子的缓慢流动。这些结果提供了一个结构框架,以理解 CRAC 通道的独特渗透特性。

相似文献

1
Structural determinants of ion permeation in CRAC channels.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22516-21. doi: 10.1073/pnas.0909574106. Epub 2009 Dec 11.
3
Pore architecture of the ORAI1 store-operated calcium channel.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4896-901. doi: 10.1073/pnas.1001169107. Epub 2010 Mar 1.
4
CRACM1 multimers form the ion-selective pore of the CRAC channel.
Curr Biol. 2006 Oct 24;16(20):2073-9. doi: 10.1016/j.cub.2006.08.085. Epub 2006 Sep 14.
5
Exploration of the pore structure of a peptide-gated Na+ channel.
EMBO J. 2001 Oct 15;20(20):5595-602. doi: 10.1093/emboj/20.20.5595.
6
Gated regulation of CRAC channel ion selectivity by STIM1.
Nature. 2012 Jan 25;482(7384):241-5. doi: 10.1038/nature10752.
7
Permeation, selectivity and gating in store-operated CRAC channels.
J Physiol. 2012 Sep 1;590(17):4179-91. doi: 10.1113/jphysiol.2012.233098. Epub 2012 May 14.
8
State-dependent block of Orai3 TM1 and TM3 cysteine mutants: insights into 2-APB activation.
J Gen Physiol. 2014 May;143(5):621-31. doi: 10.1085/jgp.201411171. Epub 2014 Apr 14.
10
The intracellular loop of Orai1 plays a central role in fast inactivation of Ca2+ release-activated Ca2+ channels.
J Biol Chem. 2010 Feb 12;285(7):5066-75. doi: 10.1074/jbc.M109.072736. Epub 2009 Dec 10.

引用本文的文献

1
Side-by-side comparison of published small molecule inhibitors against thapsigargin-induced store-operated Ca2+ entry in HEK293 cells.
PLoS One. 2024 Jan 23;19(1):e0296065. doi: 10.1371/journal.pone.0296065. eCollection 2024.
2
Regulatory mechanisms controlling store-operated calcium entry.
Front Physiol. 2023 Dec 19;14:1330259. doi: 10.3389/fphys.2023.1330259. eCollection 2023.
3
ORAI Calcium Channels: Regulation, Function, Pharmacology, and Therapeutic Targets.
Pharmaceuticals (Basel). 2023 Jan 22;16(2):162. doi: 10.3390/ph16020162.
5
The Impact of Mutation L138F/L210F on the Orai Channel: A Molecular Dynamics Simulation Study.
Front Mol Biosci. 2021 Nov 2;8:755247. doi: 10.3389/fmolb.2021.755247. eCollection 2021.
7
Interrogating permeation and gating of Orai channels using chemical modification of cysteine residues.
Methods Enzymol. 2021;652:213-239. doi: 10.1016/bs.mie.2021.02.012. Epub 2021 Apr 5.
8
ORAI1 Ca Channel as a Therapeutic Target in Pathological Vascular Remodelling.
Front Cell Dev Biol. 2021 Apr 6;9:653812. doi: 10.3389/fcell.2021.653812. eCollection 2021.
9
Novel ORAI1 Mutation Disrupts Channel Trafficking Resulting in Combined Immunodeficiency.
J Clin Immunol. 2021 Jul;41(5):1004-1015. doi: 10.1007/s10875-021-01004-8. Epub 2021 Mar 1.
10
An open pore structure of the Orai channel, finally.
Cell Calcium. 2021 Mar;94:102366. doi: 10.1016/j.ceca.2021.102366. Epub 2021 Feb 2.

本文引用的文献

1
ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond.
Immunol Rev. 2009 Sep;231(1):189-209. doi: 10.1111/j.1600-065X.2009.00818.x.
2
Mechanistic view on domains mediating STIM1-Orai coupling.
Immunol Rev. 2009 Sep;231(1):99-112. doi: 10.1111/j.1600-065X.2009.00815.x.
3
The molecular physiology of CRAC channels.
Immunol Rev. 2009 Sep;231(1):88-98. doi: 10.1111/j.1600-065X.2009.00820.x.
4
The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers.
Nature. 2008 Nov 6;456(7218):116-20. doi: 10.1038/nature07338. Epub 2008 Sep 28.
5
Functional stoichiometry of the unitary calcium-release-activated calcium channel.
Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13668-73. doi: 10.1073/pnas.0806499105. Epub 2008 Aug 29.
6
Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels.
Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2895-900. doi: 10.1073/pnas.0712288105. Epub 2008 Feb 19.
7
Orai1 subunit stoichiometry of the mammalian CRAC channel pore.
J Physiol. 2008 Jan 15;586(2):419-25. doi: 10.1113/jphysiol.2007.147249. Epub 2007 Nov 15.
9
Block of CaV1.2 channels by Gd3+ reveals preopening transitions in the selectivity filter.
J Gen Physiol. 2007 Jun;129(6):461-75. doi: 10.1085/jgp.200709733.
10
The molecular choreography of a store-operated calcium channel.
Nature. 2007 Mar 15;446(7133):284-7. doi: 10.1038/nature05637.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验