Sun Yi, Zhou Douglas, Rangan Aaditya V, Cai David
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA.
J Comput Neurosci. 2010 Apr;28(2):247-66. doi: 10.1007/s10827-009-0202-2. Epub 2009 Dec 18.
We present a numerical analysis of the dynamics of all-to-all coupled Hodgkin-Huxley (HH) neuronal networks with Poisson spike inputs. It is important to point out that, since the dynamical vector of the system contains discontinuous variables, we propose a so-called pseudo-Lyapunov exponent adapted from the classical definition using only continuous dynamical variables, and apply it in our numerical investigation. The numerical results of the largest Lyapunov exponent using this new definition are consistent with the dynamical regimes of the network. Three typical dynamical regimes-asynchronous, chaotic and synchronous, are found as the synaptic coupling strength increases from weak to strong. We use the pseudo-Lyapunov exponent and the power spectrum analysis of voltage traces to characterize the types of the network behavior. In the nonchaotic (asynchronous or synchronous) dynamical regimes, i.e., the weak or strong coupling limits, the pseudo-Lyapunov exponent is negative and there is a good numerical convergence of the solution in the trajectory-wise sense by using our numerical methods. Consequently, in these regimes the evolution of neuronal networks is reliable. For the chaotic dynamical regime with an intermediate strong coupling, the pseudo-Lyapunov exponent is positive, and there is no numerical convergence of the solution and only statistical quantifications of the numerical results are reliable. Finally, we present numerical evidence that the value of pseudo-Lyapunov exponent coincides with that of the standard Lyapunov exponent for systems we have been able to examine.
我们对具有泊松尖峰输入的全连接霍奇金-赫胥黎(HH)神经元网络的动力学进行了数值分析。需要指出的是,由于系统的动力学向量包含不连续变量,我们提出了一种从经典定义改编而来的所谓伪李雅普诺夫指数,它仅使用连续动力学变量,并将其应用于我们的数值研究中。使用这个新定义得到的最大李雅普诺夫指数的数值结果与网络的动力学状态一致。随着突触耦合强度从弱到强增加,发现了三种典型的动力学状态——异步、混沌和同步。我们使用伪李雅普诺夫指数和电压轨迹的功率谱分析来表征网络行为的类型。在非混沌(异步或同步)动力学状态下,即弱耦合或强耦合极限情况下,伪李雅普诺夫指数为负,并且使用我们的数值方法在轨迹意义上解具有良好的数值收敛性。因此,在这些状态下,神经元网络的演化是可靠的。对于具有中等强耦合的混沌动力学状态,伪李雅普诺夫指数为正,并且解没有数值收敛性,只有数值结果的统计量化是可靠的。最后,我们给出了数值证据,表明对于我们能够研究的系统,伪李雅普诺夫指数的值与标准李雅普诺夫指数的值一致。