Labor für Elektrooptik, Institut für Hochfrequenztechnik, Braunschweig, Germany.
Inorg Chem. 2010 Jan 18;49(2):397-406. doi: 10.1021/ic9009898.
We report the design and characterization of three heteroleptic orange-red phosphorescent iridium(III) complexes bearing two 2-(4-fluorophenyl)-3-methyl-quinoxaline (fpmqx) cyclometalated ligands combined with three different ancillary ligands, triazolylpyridine (trz), picolinate (pic), and acetylacetonate (acac). All of these complexes emit an orange to red color in the spectral range of 605-628 nm in dichloromethane. Strong spin-orbit coupling of the iridium atom allows the formally forbidden mixing of singlet and triplet states. Because of the structureless phosphorescent line shapes and low Stokes shifts between triplet metal-to-ligand charge-transfer ((3)MLCT) absorption and phosphorescent emission, we propose that emission originates predominantly from the (3)MLCT state with a lesser admixture of totally ligand-based (3)(pi-pi*) states. The influence of 5d-electron densities of the iridium center on highest occupied molecular orbitals leads to high emission quantum yields in toluene (Phi(p) = 0.39-0.42) and to short triplet lifetimes. Cyclovoltammetry measurements show reversible oxidation peaks from 0.74 to 0.92 V and reversible reduction waves with potentials ranging from -1.58 to -2.05 V versus Cp(2)Fe/Cp(2)Fe(+). All complexes have been applied in simple test devices and also in stable, long-living devices to evaluate their electroluminescent device performances, for which we especially report the influence of the chosen ancillary ligands on emission colors, efficiencies, and device lifetimes. We obtained narrowband emission ranging from 613 to 630 nm with a full width at half-maximum of 64-71 nm, and a maximum in power efficiency of eta(p) = 14.6 lm/W at a current density of J = 0.01 mA/cm(2) for [(fpmqx)(2)Ir(pic)]. The operating lifetimes of [(fpmqx)(2)Ir(trz)] in both neat and mixed matrixes were longer than that of the established stable tris(1-phenylisoquinolinato)iridium(III) [Ir(piq)(3)]. From the lifetime measurements, it becomes clear that the stability is strongly correlated to the type of ancillary ligand. An extrapolated lifetime of 58 000 h with an initial brightness of 1000 cd/m(2), together with a very low voltage increase of 0.2 V over a time period of 1000 h (starting voltage of 4.1 V), was achieved. Such a high device lifetime is attributed to the chemical stability of all materials toward both charge carriers and excitons.
我们报告了三种异核橙红色磷光铱(III)配合物的设计和特性,这些配合物带有两个 2-(4-氟苯基)-3-甲基喹喔啉(fpmqx)环金属化配体,并与三个不同的辅助配体结合,分别为三唑基吡啶(trz)、吡啶甲酸(pic)和乙酰丙酮(acac)。在二氯甲烷中,所有这些配合物在 605-628nm 的光谱范围内发出橙色到红色的光。铱原子的强自旋轨道耦合允许单重态和三重态之间的形式上被禁止的混合。由于磷光发射的无结构磷光线形状和低斯托克斯位移在三重态金属到配体电荷转移((3)MLCT)吸收和磷光发射之间,我们提出发射主要源于(3)MLCT 态,而较少掺杂完全基于配体的(3)(pi-pi*)态。铱中心的 5d 电子密度对最高占据分子轨道的影响导致在甲苯中具有高的发射量子产率(Phi(p) = 0.39-0.42)和短的三重态寿命。循环伏安测量显示,从 0.74 到 0.92V 的可逆氧化峰和从-1.58 到-2.05V 相对于 Cp(2)Fe/Cp(2)Fe(+)的可逆还原波。所有配合物都已应用于简单的测试设备中,也应用于稳定的、长寿命的设备中,以评估它们的电致发光器件性能,我们特别报告了所选辅助配体对发射颜色、效率和器件寿命的影响。我们获得了从 613 到 630nm 的窄带发射,半峰全宽为 64-71nm,在电流密度为 J = 0.01mA/cm(2)时,功率效率 eta(p)达到 14.6lm/W,对于[(fpmqx)(2)Ir(pic)]。[(fpmqx)(2)Ir(trz)]在纯和混合基质中的工作寿命均长于已建立的稳定的三(1-苯基异喹啉)铱(III)[Ir(piq)(3)]。从寿命测量中可以清楚地看出,稳定性与辅助配体的类型密切相关。在 1000 小时的时间内,初始亮度为 1000cd/m(2)时,预测寿命为 58000 小时,同时电压仅增加 0.2V(起始电压为 4.1V)。如此高的器件寿命归因于所有材料对电荷载流子和激子的化学稳定性。