Organometallic Chemistry Laboratory and Advanced Catalyst Research Team, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Inorg Chem. 2012 Jan 16;51(2):822-35. doi: 10.1021/ic201217a. Epub 2011 Dec 28.
We report the synthesis, structure, and photophysical and electroluminescent (EL) properties of a series of heteroleptic bis(pyridylphenyl)iridium(III) complexes with various ancillary guanidinate ligands. The reaction of the bis(pyridylphenyl)iridium(III) chloride (ppy)(2)Ir(μ-Cl) with the lithium salt of various guanidine ligands Li{(N(i)Pr)(2)C(NR(1)R(2))} at 80 °C gave in 60-80% yield the corresponding heteroleptic bis(pyridylphenyl)/guanidinate iridium(III) complexes having a general formula of [(ppy)(2)Ir{(N(i)Pr)(2)C(NR(1)R(2))}], where NR(1)R(2) = NPh(2) (1), N(C(6)H(4)(t)Bu-4)(2) (2), carbazolyl (3), 3,6-bis(tert-butyl)carbazolyl (4), N(C(6)H(4))(2)S (5), N(C(6)H(4))(2)O (6), indolyl (7), NEt(2) (8), N(i)Pr(2) (9), N(i)Bu(2) (10), and N(SiMe(3))(2) (11). These heteroleptic cyclometalated (C^N) iridium(III) complexes showed intense absorption bands in the UV region assignable to π-π* transitions and weaker metal-to-ligand charge-transfer transitions extending to the visible region. These complexes also showed intense emissions at room temperature. Their photoluminescence spectra were influenced to some extent by the ancillary guanidinate ligands, giving λ(max) values in the range of 528-560 nm with quantum yields (Φ) of 0.16-0.37 and lifetimes of 0.61-1.43 μs. Organic light-emitting diodes were fabricated by the use of these complexes as dopants in various concentrations (5-100%) in a N,N'-dicarbazolylbiphenyl host. High current efficiency (η(c); up to 137.4 cd/A) and power efficiency (η(p); up to 45.7 lm/W) were observed under appropriate conditions. Their high EL efficiency may result from efficient trapping and radiative relaxation of the excitons formed in the EL process. Because of the steric hindrance of the guanidinate ligands, no significant intermolecular interaction was observed in these complexes, thus leading to the reduction of self-quenching and triplet-triplet annihilation at high currents. The EL emission color could be changed in the range of green to yellow by choosing appropriate guanidinate ligands.
我们报告了一系列具有各种辅助胍基配体的异双(吡啶基苯基)铱(III)配合物的合成、结构以及光物理和电致发光(EL)性质。将双(吡啶基苯基)铱(III)氯化物[(ppy)2Ir(μ-Cl)]2与各种胍基配体Li{(N(i)Pr)(2)C(NR1R2)}的锂盐在 80°C 下反应,以 60-80%的产率得到了具有通式[(ppy)2Ir{(N(i)Pr)(2)C(NR1R2)}]的相应异双(吡啶基苯基/胍基)铱(III)配合物,其中 NR1R2= NPh2(1)、N(C6H4(t)Bu-4)2(2)、咔唑基(3)、3,6-双(叔丁基)咔唑基(4)、N(C6H4)2S(5)、N(C6H4)2O(6)、吲哚基(7)、NEt2(8)、N(i)Pr2(9)、N(i)Bu2(10)和 N(SiMe3)2(11)。这些异双环金属化(C^N)铱(III)配合物在 UV 区域显示出强烈的吸收带,可归因于π-π*跃迁,较弱的金属-配体电荷转移跃迁延伸至可见区域。这些配合物在室温下也显示出强烈的发射。它们的光致发光光谱在一定程度上受到辅助胍基配体的影响,在 528-560nm 范围内给出λ(max)值,量子产率(Φ)为 0.16-0.37,寿命为 0.61-1.43μs。通过使用这些配合物作为掺杂剂,在 N,N'-二咔唑基联苯主体中以 5-100%的各种浓度制备了有机发光二极管。在适当的条件下,观察到高电流效率(η(c);高达 137.4cd/A)和功率效率(η(p);高达 45.7lm/W)。它们的高 EL 效率可能源于 EL 过程中形成的激子的有效俘获和辐射弛豫。由于胍基配体的空间位阻,这些配合物中没有观察到明显的分子间相互作用,从而减少了高电流下的自猝灭和三重态-三重态湮灭。通过选择合适的胍基配体,可以将 EL 发射颜色在绿色到黄色范围内改变。