Center for Bioinformatics Hamburg, University of Hamburg, Bundesstrasse 43, D-20146 Hamburg.
J Chem Inf Model. 2010 Jan;50(1):1-21. doi: 10.1021/ci900287p.
We present LoFT, a tool for focused combinatorial library design. LoFT provides a set of algorithms, constructing a focused library from a chemical fragment space under optimization of multiple design criteria. A weighted multiobjective scoring function based on physicochemical descriptors is employed for traversing the chemical search space. The new aspect of LoFT is that a similarity-driven product-based library design approach is provided on fragment level. For this reason the feature tree descriptor is incorporated for similarity comparison of library compounds to given bioactive molecules as well as for diversifying the resulting libraries. The feature tree descriptor abstracts the molecular graph to a tree structure where the nodes are labeled with physicochemical properties. For comparison, the nodes of two trees are mapped onto each other. This strictly hierarchical mechanism is suitable for the efficient comparison of chemical fragments, allowing the evaluation of the resulting products on fragment level without explicitly enumerating them. LoFT was validated, applying three different data sets. Starting with a random reagent selection, we optimized the libraries using maximum similarity to known bioactive molecules and iteratively adding further criteria. Moreover, we compared these results with data we obtained with FTrees-FS.
我们提出了 LoFT,这是一种用于集中组合库设计的工具。LoFT 提供了一组算法,可在多个设计标准的优化下,从化学片段空间中构建集中库。采用基于物理化学描述符的加权多目标评分函数来遍历化学搜索空间。LoFT 的新方面在于,在片段级别上提供了基于相似性的基于产品的库设计方法。因此,特征树描述符被合并用于库化合物与给定生物活性分子的相似性比较,以及多样化生成的库。特征树描述符将分子图抽象为树结构,其中节点用物理化学性质标记。为了进行比较,两棵树的节点相互映射。这种严格的层次机制非常适合于化学片段的高效比较,允许在不明确枚举它们的情况下,在片段级别上评估生成的产物。我们使用三个不同的数据集验证了 LoFT。从随机试剂选择开始,我们使用与已知生物活性分子的最大相似性来优化库,并迭代地添加更多标准。此外,我们将这些结果与我们使用 FTrees-FS 获得的数据进行了比较。