Suppr超能文献

通过化学空间网络进行知识发现:以有机电子学为例。

Knowledge discovery through chemical space networks: the case of organic electronics.

作者信息

Kunkel Christian, Schober Christoph, Oberhofer Harald, Reuter Karsten

机构信息

Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany.

出版信息

J Mol Model. 2019 Mar 7;25(4):87. doi: 10.1007/s00894-019-3950-6.

Abstract

Modern materials discovery and design studies often rely on the computational screening of large databases. Complementing experimental databases, virtual databases are thereby increasingly established through the first-principles calculation of computationally inexpensive, but for a given application, decisive microscopic quantities of the system. These so-called descriptors are calculated for vast numbers of candidate materials. In general, the sheer volume of datapoints generated in such studies precludes an in depth human analysis. To this end, smart visualization techniques, based e.g., on so-called chemical space networks (CSN), have been developed to extract general design rules connecting structural modifications to changes in the target functionality. In this work, we generate and visualize the CSN of possible crystalline organic semiconductors based on an in-house database of > 64,000 molecular crystals that we extracted from the exhaustive Cambridge Structural Database and for which we computed prominent charge-mobility descriptors. Our CSN thereby links clusters of molecular crystals based on the chemical similarity of the scaffolds of their molecular building blocks and thus groups communities of similar molecules. Including each cluster's median descriptor values, the CSN visualization not only reproduces known trends of good organic semiconductors but also allows us to extract general design rules for organic molecular scaffolds. Finally, the local environment of each scaffold in our visualization shows how thoroughly its local chemical space has already been explored synthetically. Of special interest here are those clusters with promising descriptor values, yet with little or no connections in the sampled chemical space, as these offer the most room for scaffold optimization.

摘要

现代材料发现与设计研究通常依赖于对大型数据库的计算筛选。作为实验数据库的补充,虚拟数据库因此越来越多地通过对计算成本较低但对于给定应用而言具有决定性的系统微观量进行第一性原理计算来建立。这些所谓的描述符是针对大量候选材料计算得出的。一般来说,此类研究中产生的数据点数量巨大,使得深入的人工分析难以实现。为此,已经开发了基于例如所谓化学空间网络(CSN)的智能可视化技术,以提取将结构修饰与目标功能变化联系起来的通用设计规则。在这项工作中,我们基于一个内部数据库生成并可视化了可能的结晶有机半导体的CSN,该数据库包含我们从详尽的剑桥结构数据库中提取的超过64000个分子晶体,并且我们为其计算了突出的电荷迁移率描述符。我们的CSN由此基于分子构建单元支架的化学相似性将分子晶体簇联系起来,从而对相似分子群落进行分组。包括每个簇的中位描述符值,CSN可视化不仅再现了已知的良好有机半导体趋势,还使我们能够提取有机分子支架的通用设计规则。最后,我们可视化中每个支架的局部环境展示了其局部化学空间在合成方面已被探索的程度。这里特别有趣的是那些具有有前景的描述符值但在采样化学空间中连接很少或没有连接的簇,因为这些簇为支架优化提供了最大的空间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验