Suppr超能文献

增强碳纳米管间的摩擦力:一种增强纤维的有效策略。

Enhancement of friction between carbon nanotubes: an efficient strategy to strengthen fibers.

机构信息

Suzhou Institute of Nano-Tech and Nano-Bionics, Ruoshui Road 398, Suzhou 215125, China.

出版信息

ACS Nano. 2010 Jan 26;4(1):312-6. doi: 10.1021/nn901515j.

Abstract

Interfacial friction plays a crucial role in the mechanical properties of carbon nanotube based fibers, composites, and devices. Here we use molecular dynamics simulation to investigate the pressure effect on the friction within carbon nanotube bundles. It reveals that the intertube frictional force can be increased by a factor of 1.5-4, depending on tube chirality and radius, when all tubes collapse above a critical pressure and when the bundle remains collapsed with unloading down to atmospheric pressure. Furthermore, the overall cross-sectional area also decreases significantly for the collapsed structure, making the bundle stronger. Our study suggests a new and efficient way to reinforce nanotube fibers, possibly stronger than carbon fibers, for usage at ambient conditions.

摘要

界面摩擦力在基于碳纳米管的纤维、复合材料和器件的机械性能中起着至关重要的作用。在这里,我们使用分子动力学模拟来研究压力对碳纳米管束内摩擦力的影响。结果表明,当所有的管在一个临界压力之上坍塌,并且当束在卸载到大气压时仍然保持坍塌时,根据管的手性和半径,管间的摩擦力可以增加 1.5-4 倍。此外,对于坍塌结构,总的横截面面积也显著减小,使束更强。我们的研究为在环境条件下使用的纳米管纤维提供了一种新的、有效的增强方法,其强度可能比碳纤维还要高。

相似文献

2
Temperature dependence of frictional force in carbon nanotube oscillators.
Nanotechnology. 2009 Jan 21;20(3):035704. doi: 10.1088/0957-4484/20/3/035704. Epub 2008 Dec 17.
3
Reinforcement of single-walled carbon nanotube bundles by intertube bridging.
Nat Mater. 2004 Mar;3(3):153-7. doi: 10.1038/nmat1076. Epub 2004 Feb 15.
7
Graphene nanoribbon composites.
ACS Nano. 2010 Dec 28;4(12):7415-20. doi: 10.1021/nn102529n. Epub 2010 Nov 16.
8
Dissipation and fluctuations in nanoelectromechanical systems based on carbon nanotubes.
Nanotechnology. 2009 Mar 11;20(10):105202. doi: 10.1088/0957-4484/20/10/105202. Epub 2009 Feb 16.
9
High volume fraction carbon nanotube-epoxy composites.
Nanotechnology. 2009 Oct 7;20(40):405702. doi: 10.1088/0957-4484/20/40/405702. Epub 2009 Sep 8.
10
Dislodgement of carbon nanotube bundles under pressure driven flow.
Nanotechnology. 2010 Apr 16;21(15):155305. doi: 10.1088/0957-4484/21/15/155305. Epub 2010 Mar 23.

引用本文的文献

1
Wet-spinning of carbon nanotube fibers: dispersion, processing and properties.
Natl Sci Rev. 2024 Jun 12;11(10):nwae203. doi: 10.1093/nsr/nwae203. eCollection 2024 Oct.
2
3
Biocompatible Carbon Nanotube-Based Hybrid Microfiber for Implantable Electrochemical Actuator and Flexible Electronic Applications.
ACS Appl Mater Interfaces. 2019 Jun 12;11(23):20615-20627. doi: 10.1021/acsami.9b02927. Epub 2019 May 22.
4
Single-step process to improve the mechanical properties of carbon nanotube yarn.
Beilstein J Nanotechnol. 2018 Feb 13;9:545-554. doi: 10.3762/bjnano.9.52. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验