Suppr超能文献

用于可植入电化学致动器和柔性电子应用的基于生物相容性碳纳米管的混合微纤维。

Biocompatible Carbon Nanotube-Based Hybrid Microfiber for Implantable Electrochemical Actuator and Flexible Electronic Applications.

作者信息

Zheng Ting, Pour Shahid Saeed Abadi Parisa, Seo Jungmok, Cha Byung-Hyun, Miccoli Beatrice, Li Yi-Chen, Park Kijun, Park Sunghyun, Choi Seon-Jin, Bayaniahangar Rasoul, Zhang Dongxing, Lee Soo-Hong, Lee Chang-Kee, Khademhosseini Ali, Shin Su Ryon

机构信息

Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital , Harvard Medical School , Cambridge , Massachusetts 02139 , United States.

Harvard-MIT Division of Health Sciences and Technology , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.

出版信息

ACS Appl Mater Interfaces. 2019 Jun 12;11(23):20615-20627. doi: 10.1021/acsami.9b02927. Epub 2019 May 22.

Abstract

Biocompatible, electrically conductive microfibers with superior mechanical properties have received a great attention due to their potential applications in various biomedical applications such as implantable medical devices, biosensors, artificial muscles, and microactuators. Here, we developed an electrically conductive and mechanically stable carbon nanotube-based microactuator with a low degradability that makes it usable for an implantable device in the body or biological environments. The microfiber was composed of hyaluronic acid (HA) hydrogel and single-wall carbon nanotubes (SWCNTs) (HA/SWCNT). HA hydrogel acts as biosurfactant and ion-conducting binder to improve the dispersion of SWCNTs resulting in enhanced electrical and mechanical properties of the hybrid microfiber. In addition, HA was crosslinked to prevent the leaking of the nanotubes from the composite. Crosslinking of HA hydrogel significantly enhances Young's modulus, the failure strain, the toughness, the stability of the electrical conductivity, and the resistance to biodegradation and creep of hybrid microfibers. The obtained crosslinked HA/SWCNT hybrid microfibers show an excellent capacitance and actuation behavior under mechanical loading with a low potential of ±1 V in a biological environment. Furthermore, the HA/SWCNT microfibers exhibit an excellent in vitro viability. Finally, the biocompatibility is shown through the resolution of an early inflammatory response in less than 3 weeks after the implantation of the microfibers in the subcutaneous tissue of mice.

摘要

具有优异机械性能的生物相容性导电微纤维因其在各种生物医学应用中的潜在应用而备受关注,这些应用包括可植入医疗设备、生物传感器、人工肌肉和微致动器等。在此,我们开发了一种基于碳纳米管的导电且机械稳定的微致动器,其降解性低,可用于体内或生物环境中的可植入设备。该微纤维由透明质酸(HA)水凝胶和单壁碳纳米管(SWCNTs)(HA/SWCNT)组成。HA水凝胶充当生物表面活性剂和离子传导粘合剂,以改善SWCNTs的分散性,从而提高混合微纤维的电学和机械性能。此外,HA被交联以防止纳米管从复合材料中泄漏。HA水凝胶的交联显著提高了混合微纤维的杨氏模量、断裂应变、韧性、电导率稳定性以及抗生物降解和抗蠕变能力。所获得的交联HA/SWCNT混合微纤维在生物环境中±1 V的低电位下机械加载时表现出优异的电容和驱动行为。此外,HA/SWCNT微纤维表现出优异的体外活力。最后,通过在将微纤维植入小鼠皮下组织后不到3周内早期炎症反应的消退,证明了其生物相容性。

相似文献

引用本文的文献

1
Emerging innovations in electrically powered artificial muscle fibers.电动人工肌肉纤维的新兴创新。
Natl Sci Rev. 2024 Jul 5;11(10):nwae232. doi: 10.1093/nsr/nwae232. eCollection 2024 Oct.

本文引用的文献

1
Crosslinking method of hyaluronic-based hydrogel for biomedical applications.用于生物医学应用的透明质酸基水凝胶的交联方法。
J Tissue Eng. 2017 Sep 6;8:2041731417726464. doi: 10.1177/2041731417726464. eCollection 2017 Jan-Dec.
2
Carbon-Nanotube Fibers for Wearable Devices and Smart Textiles.用于可穿戴设备和智能纺织品的碳纳米管纤维。
Adv Mater. 2016 Dec;28(47):10529-10538. doi: 10.1002/adma.201601186. Epub 2016 Jul 19.
7
Hyaluronic acid based scaffolds for tissue engineering--a review.基于透明质酸的组织工程支架——综述。
Carbohydr Polym. 2013 Feb 15;92(2):1262-79. doi: 10.1016/j.carbpol.2012.10.028. Epub 2012 Oct 17.
8
State of the art of carbon nanotube fibers: opportunities and challenges.碳纤维的最新发展:机遇与挑战。
Adv Mater. 2012 Apr 10;24(14):1805-33. doi: 10.1002/adma.201104672. Epub 2012 Mar 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验