Groupe de recherche en toxicologie humaine (TOXHUM), Université de Montréal, Case Postale 6128, Succursale Centre-Ville, Montréal, PQ, H3C 3J7, Canada.
Toxicol Mech Methods. 2005;15(5):361-6. doi: 10.1080/15376520500195921.
Chronic exposure to volatile organic chemicals (VOCs) in the environment leads to steady-state conditions. The establishment of quantitative relationships between steady-state blood concentrations and molecular structures of VOCs can be potentially useful. The objective of this study was therefore to investigate the relationship between the steady-state arterial blood concentration (Ca(ss)) in the rat and the molecular structures of 19 VOCs belonging to multiple chemical families (alkanes, haloalkanes, haloalkenes, and aromatics). The overall approach consisted of developing quantitative relationships between molecular fragments (CH(3), CH(2), CH, C, C horizontal lineC, H, Cl, benzene ring, and H in benzene ring structure) in alkanes, haloalkanes, haloethylenes, and aromatic hydrocarbons, as well as their Ca(ss) (associated with 1 mu mu mol/L inhalation exposure) according to an additive fragment model. This modeling approach implies that each fragment in the structure of a chemical has an additive and constant contribution to its Ca(ss). A multilinear regression was performed using a commercially available statistical software package, and the results obtained were essentially the contributions associated with each of the nine structural fragments toward Ca(ss) in the rat continuously exposed to 1 mu mu mol/L VOC in the air. The resulting model estimated adequately the Ca(ss) of VOCs initially used in the calibration (estimated/experimental ratio: 1.04 +/- 0.30, mean +/- standard deviation [SD]). This molecular structure vs. Ca(ss) relationship was then evaluated using an external dataset on Ca(ss) for three aliphatic hydrocarbons (octane, 2-methyl octane, and 1-nonene; 100 ppm exposures). The ratio of predicted to experimental Ca(ss) for these chemicals ranged from 0.6 to 1.2. The results of this study suggest that steady-state blood concentrations of inhaled VOCs can be predicted using structure-activity type models.
慢性暴露于环境中的挥发性有机化合物(VOC)会导致稳态条件。建立 VOC 稳态血液浓度与分子结构之间的定量关系可能具有潜在的用途。因此,本研究的目的是研究大鼠动脉血液浓度(Ca(ss))与 19 种属于多种化学家族(烷烃、卤代烷烃、卤代烯烃和芳烃)的 VOC 分子结构之间的关系。总体方法包括根据加和片段模型,建立烷烃、卤代烷烃、卤代烯烃和芳烃中分子片段(CH(3)、CH(2)、CH、C、C 横线、H、Cl、苯环和苯环结构中的 H)与其 Ca(ss)(与 1 μmol/L 吸入暴露相关)之间的定量关系。这种建模方法意味着化学结构中每个片段对其 Ca(ss)都有一个加和的、恒定的贡献。使用商业可得的统计软件包进行多元线性回归,得到的结果基本上是每个结构片段对大鼠持续暴露于空气中 1 μmol/L VOC 时的 Ca(ss)的贡献。该模型可以很好地预测最初用于校准的 VOC 的 Ca(ss)(估计/实验比值:1.04 +/- 0.30,平均值 +/- 标准差[SD])。然后使用关于 Ca(ss)的外部数据集(三种脂肪族烃(辛烷、2-甲基辛烷和 1-壬烯;100ppm 暴露))评估这种分子结构与 Ca(ss)的关系。这些化学品的预测与实验 Ca(ss)比值范围为 0.6 至 1.2。这项研究的结果表明,可以使用结构活性类型模型预测吸入性 VOC 的稳态血液浓度。