Suppr超能文献

睫状神经营养因子诱导的发芽能保持轻度脊髓性肌萎缩症小鼠模型的运动功能。

Ciliary neurotrophic factor-induced sprouting preserves motor function in a mouse model of mild spinal muscular atrophy.

机构信息

Institute for Clinical Neurobiology, Josef-Schneider-Str. 11, 97080 Wuerzburg, Germany.

出版信息

Hum Mol Genet. 2010 Mar 15;19(6):973-86. doi: 10.1093/hmg/ddp562. Epub 2009 Dec 18.

Abstract

Proximal spinal muscular atrophy (SMA) is caused by homozygous loss or mutation of the SMN1 gene on human chromosome 5. Depending on the levels of SMN protein produced from a second SMN gene (SMN2), different forms of the disease are distinguished. In patients with milder forms of the disease, type III or type IV SMA that normally reach adulthood, enlargement of motor units is regularly observed. However, the underlying mechanisms are not understood. Smn(+/-) mice, a mouse model of type III/IV SMA, reveal progressive loss of motor neurons and denervation of motor endplates starting at 4 weeks of age. Loss of spinal motor neurons between 1 month and 12 months reaches 40%, whereas muscle strength is not reduced. In these animals, amplitude of single motor unit action potentials in the gastrocnemic muscle is increased more than 2-fold. Confocal analysis reveals pronounced sprouting of innervating motor axons. As ciliary neurotrophic factor (CNTF) is highly expressed in Schwann cells, we investigated its role for a compensatory sprouting response and maintenance of muscle strength in this mouse model. Genetic ablation of CNTF results in reduced sprouting and decline of muscle strength in Smn(+/-) mice. These findings indicate that CNTF is necessary for a sprouting response and thus enhances the size of motor units in skeletal muscles of Smn(+/-) mice. This compensatory mechanism could guide the way to new therapies for this motor neuron disease.

摘要

脊髓性肌萎缩症(SMA)是由人类 5 号染色体上的 SMN1 基因的纯合缺失或突变引起的。根据从第二个 SMN 基因(SMN2)产生的 SMN 蛋白水平,区分出不同形式的疾病。在疾病的较轻形式的患者中,III 型或 IV 型 SMA 通常会达到成年期,会定期观察到运动单位的增大。然而,其潜在机制尚不清楚。Smn(+/-) 小鼠是 III/IV 型 SMA 的小鼠模型,从 4 周龄开始,表现出运动神经元的进行性丧失和运动终板的去神经支配。1 个月至 12 个月之间的脊髓运动神经元丧失达到 40%,而肌肉力量没有降低。在这些动物中,腓肠肌中单根运动单位动作电位的幅度增加了 2 倍以上。共聚焦分析显示支配运动轴突的明显发芽。由于睫状神经营养因子(CNTF)在施万细胞中高度表达,我们研究了其在这种小鼠模型中对代偿性发芽反应和肌肉力量维持的作用。CNTF 的基因缺失导致 Smn(+/-) 小鼠中的发芽减少和肌肉力量下降。这些发现表明 CNTF 是发芽反应所必需的,从而增强了 Smn(+/-) 小鼠骨骼肌中运动单位的大小。这种代偿机制可以为这种运动神经元疾病的新疗法指明方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验